[Transcriptome analysis reveals genes involved in biosynthesis of secondary metabolism in Cornus officinalis].
Zhongguo Zhong Yao Za Zhi
; 42(2): 213-219, 2017 Jan.
Article
en Zh
| MEDLINE
| ID: mdl-28948722
In order to explore genetic basis for the biosynthesis of secondary metabolism,the transcriptome of Cornus officinalis was sequenced by the new generation of high-throughput sequencing technology,A total of 96 032 unigenes were assembled with an average length of 590.53 bp. Among them, 35 478 unigenes were annotated in the public databases NR,Swissprot,COG,GO,KOG,Pfam and KEGG. Based on the assignment of KEGG pathway, 84 involved in ridoid biosynthesis and 487 unigenes involved in others secondary metabolites biosynthesis were found. Additionally,53 unigenes and 72 unigenes were predicted to have potential functions of cytochome P450 and UDP- glycosyltransferases based on the annotation result, which may encode responsible for secondary metabolites modification. This study was the first comprehensive transcriptome analysis for C. officinalis, and the candidate genes involved in the biosynthesis of secondary metabolites were obtained. The transcriptome data constitutes a much more abundant genetic resource that can be utilized to benefit further molecular biology studies on C. officinalis.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Genes de Plantas
/
Cornus
/
Transcriptoma
/
Metabolismo Secundario
Idioma:
Zh
Revista:
Zhongguo Zhong Yao Za Zhi
Asunto de la revista:
FARMACOLOGIA
/
TERAPIAS COMPLEMENTARES
Año:
2017
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
China