Your browser doesn't support javascript.
loading
Lifshitz transition from valence fluctuations in YbAl3.
Chatterjee, Shouvik; Ruf, Jacob P; Wei, Haofei I; Finkelstein, Kenneth D; Schlom, Darrell G; Shen, Kyle M.
Afiliación
  • Chatterjee S; Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY, 14853, USA.
  • Ruf JP; Department of Electrical & Computer Engineering, University of California, Santa Barbara, CA, 93106, USA.
  • Wei HI; Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY, 14853, USA.
  • Finkelstein KD; Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY, 14853, USA.
  • Schlom DG; Cornell High Energy Synchrotron Source, Wilson Laboratory, Cornell University, Ithaca, NY, 14853, USA.
  • Shen KM; Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA.
Nat Commun ; 8(1): 852, 2017 10 11.
Article en En | MEDLINE | ID: mdl-29021552
ABSTRACT
In mixed-valent Kondo lattice systems, such as YbAl3, interactions between localized and delocalized electrons can lead to fluctuations between two different valence configurations with changing temperature or pressure. The impact of this change on the momentum-space electronic structure is essential for understanding their emergent properties, but has remained enigmatic. Here, by employing a combination of molecular beam epitaxy and in situ angle-resolved photoemission spectroscopy we show that valence fluctuations can lead to dramatic changes in the Fermi surface topology, even resulting in a Lifshitz transition. As the temperature is lowered, a small electron pocket in YbAl3 becomes completely unoccupied while the low-energy ytterbium (Yb) 4f states become increasingly itinerant, acquiring additional spectral weight, longer lifetimes, and well-defined dispersions. Our work presents a unified picture of how local valence fluctuations connect to momentum-space concepts such as band filling and Fermi surface topology in mixed valence systems.How the electronic structure of a mixed-valence system changes with respect to local chemical environment remains elusive. Here, Chatterjee et al. show that valence fluctuations of YbAl3 can lead to dramatic changes in the Fermi surface topology in reciprocal space.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Iterbio / Compuestos de Aluminio Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Iterbio / Compuestos de Aluminio Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos
...