Your browser doesn't support javascript.
loading
Developmental stage-dependent regulation of spine formation by calcium-calmodulin-dependent protein kinase IIα and Rap1.
Cornelia Koeberle, Solveigh; Tanaka, Shinji; Kuriu, Toshihiko; Iwasaki, Hirohide; Koeberle, Andreas; Schulz, Alexander; Helbing, Dario-Lucas; Yamagata, Yoko; Morrison, Helen; Okabe, Shigeo.
Afiliación
  • Cornelia Koeberle S; Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
  • Tanaka S; Institute of Age Research, Fritz Lipmann Institute, Jena, Germany.
  • Kuriu T; Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
  • Iwasaki H; CREST, JST, Japan.
  • Koeberle A; Department of Neurophysiology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, 769-2193, Japan.
  • Schulz A; Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
  • Helbing DL; CREST, JST, Japan.
  • Yamagata Y; Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
  • Morrison H; Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany.
  • Okabe S; Institute of Age Research, Fritz Lipmann Institute, Jena, Germany.
Sci Rep ; 7(1): 13409, 2017 10 17.
Article en En | MEDLINE | ID: mdl-29042611
ABSTRACT
The roles of calcium-calmodulin-dependent protein kinase II-alpha (CaMKIIα) in the expression of long-term synaptic plasticity in the adult brain have been extensively studied. However, how increased CaMKIIα activity controls the maturation of neuronal circuits remains incompletely understood. Herein, we show that pyramidal neurons without CaMKIIα activity upregulate the rate of spine addition, resulting in elevated spine density. Genetic elimination of CaMKIIα activity specifically eliminated the observed maturation-dependent suppression of spine formation. Enhanced spine formation was associated with the stabilization of actin in the spine and could be reversed by increasing the activity of the small GTPase Rap1. CaMKIIα activity was critical in the phosphorylation of synaptic Ras GTPase-activating protein (synGAP), the dispersion of synGAP from postsynaptic sites, and the activation of postsynaptic Rap1. CaMKIIα is already known to be essential in learning and memory, but our findings suggest that CaMKIIα plays an important activity-dependent role in restricting spine density during postnatal development.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Diferenciación Celular / Proteínas de Unión al GTP rap1 / Espinas Dendríticas / Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina / Neuronas Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Sci Rep Año: 2017 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Diferenciación Celular / Proteínas de Unión al GTP rap1 / Espinas Dendríticas / Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina / Neuronas Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Sci Rep Año: 2017 Tipo del documento: Article País de afiliación: Japón