Your browser doesn't support javascript.
loading
Automatic Segmentation of Ultrasound Tomography Image.
Wu, Shibin; Yu, Shaode; Zhuang, Ling; Wei, Xinhua; Sak, Mark; Duric, Neb; Hu, Jiani; Xie, Yaoqin.
Afiliación
  • Wu S; Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China.
  • Yu S; Shenzhen Colleges of Advanced Technology, University of Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China.
  • Zhuang L; Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China.
  • Wei X; Shenzhen Colleges of Advanced Technology, University of Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China.
  • Sak M; Department of Oncology, The Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA.
  • Duric N; Department of Radiology, Guangzhou First Hospital, Guangzhou Medical University, Guangzhou 510180, China.
  • Hu J; Department of Oncology, The Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA.
  • Xie Y; Delphinus Medical Technologies, Inc., Plymouth, MI 48170, USA.
Biomed Res Int ; 2017: 2059036, 2017.
Article en En | MEDLINE | ID: mdl-29082240
Ultrasound tomography (UST) image segmentation is fundamental in breast density estimation, medicine response analysis, and anatomical change quantification. Existing methods are time consuming and require massive manual interaction. To address these issues, an automatic algorithm based on GrabCut (AUGC) is proposed in this paper. The presented method designs automated GrabCut initialization for incomplete labeling and is sped up with multicore parallel programming. To verify performance, AUGC is applied to segment thirty-two in vivo UST volumetric images. The performance of AUGC is validated with breast overlapping metrics (Dice coefficient (D), Jaccard (J), and False positive (FP)) and time cost (TC). Furthermore, AUGC is compared to other methods, including Confidence Connected Region Growing (CCRG), watershed, and Active Contour based Curve Delineation (ACCD). Experimental results indicate that AUGC achieves the highest accuracy (D = 0.9275 and J = 0.8660 and FP = 0.0077) and takes on average about 4 seconds to process a volumetric image. It was said that AUGC benefits large-scale studies by using UST images for breast cancer screening and pathological quantification.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Neoplasias de la Mama / Tomografía / Ultrasonografía Tipo de estudio: Diagnostic_studies Límite: Female / Humans Idioma: En Revista: Biomed Res Int Año: 2017 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Neoplasias de la Mama / Tomografía / Ultrasonografía Tipo de estudio: Diagnostic_studies Límite: Female / Humans Idioma: En Revista: Biomed Res Int Año: 2017 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos