Your browser doesn't support javascript.
loading
Pivotal role for the ESCRT-II complex subunit EAP30/SNF8 in IRF3-dependent innate antiviral defense.
Kumthip, Kattareeya; Yang, Darong; Li, Nan L; Zhang, Yunzhi; Fan, Meiyun; Sethuraman, Aarti; Li, Kui.
Afiliación
  • Kumthip K; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America.
  • Yang D; Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
  • Li NL; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America.
  • Zhang Y; Institute of Pathogen Biology and Immunology of College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China.
  • Fan M; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America.
  • Sethuraman A; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America.
  • Li K; Department of Infectious Diseases, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
PLoS Pathog ; 13(10): e1006713, 2017 Oct.
Article en En | MEDLINE | ID: mdl-29084253
The activation of interferon (IFN)-regulatory factor-3 (IRF3), characterized by phosphorylation and nuclear translocation of the latent transcription factor, is central to initiating innate antiviral responses. Whereas much has been learned about the upstream pathways and signaling mechanisms leading to IRF3 activation, how activated IRF3 operates in the nucleus to control transcription of IFNs remains obscure. Here we identify EAP30 (a.k.a, SNF8/VPS22), an endosomal sorting complex required for transport (ESCRT)-II subunit, as an essential factor controlling IRF3-dependent antiviral defense. Depletion of EAP30, but not other ESCRT-II subunits, compromised IRF3-dependent induction of type I and III IFNs, IFN-stimulated genes (ISGs) and chemokines by double-stranded RNA or viruses. EAP30, however, was dispensable for the induction of inflammatory mediators of strict NF-κB target. Significantly, knockdown of EAP30 also impaired the establishment of an antiviral state against vesicular stomatitis virus and hepatitis C virus, which are of distinct viral families. Mechanistically, EAP30 was not required for IRF3 activation but rather acted at a downstream step. Specifically, a fraction of EAP30 localized within the nucleus, where it formed a complex with IRF3 and its transcriptional co-activator, CREB-binding protein (CBP), in a virus-inducible manner. These interactions promoted IRF3 binding to target gene promoters such as IFN-ß, IFN-λ1 and ISG56. Together, our data describe an unappreciated role for EAP30 in IRF3-dependent innate antiviral response in the nucleus.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Hepatitis C / Hepacivirus / Factor 3 Regulador del Interferón / Complejos de Clasificación Endosomal Requeridos para el Transporte / Inmunidad Innata Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: PLoS Pathog Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Hepatitis C / Hepacivirus / Factor 3 Regulador del Interferón / Complejos de Clasificación Endosomal Requeridos para el Transporte / Inmunidad Innata Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: PLoS Pathog Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos