Your browser doesn't support javascript.
loading
Explaining the T,V-dependent dynamics of glass forming liquids: The cooperative free volume model tested against new simulation results.
White, Ronald P; Lipson, Jane E G.
Afiliación
  • White RP; Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA.
  • Lipson JEG; Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA.
J Chem Phys ; 147(18): 184503, 2017 Nov 14.
Article en En | MEDLINE | ID: mdl-29141440
ABSTRACT
In this article, we derive a rate model, the "cooperative free volume" (CFV) model, to explain relaxation dynamics in terms of a system's free volume, Vfree, and its temperature, T, over widely varied pressure dependent conditions. In the CFV model, the rate a molecule moves a distance on the order of its own size is dependent on the cooperation of surrounding molecules to open up enough free space. To test CFV, we have generated extensive T,V dependent simulation data for structural relaxation times, τ, on a Kob and Andersen type Lennard-Jones (KA-LJ) fluid. The Vfree = V - Vhc values are obtained by estimating the limiting hard core volume, Vhc, through analysis of the KA-LJ PVT data. We provide the first simulation evidence that shows ln τ to be linearly proportional to 1/Vfree on isotherms, with T-dependent slopes, thus confirming our recent analysis of experimental systems. The linear relationship exhibited by the simulation data is further shown to occur at temperatures both above and below the transition to Arrhenius behavior. We also show that the gas kinetic T-dependent contribution is important in simulation results and that there can be a significant entropic contribution from lingering molecular hard-cores at high T. A key result is that non-Arrhenius relaxation behavior is always exhibited on isobars of the KA-LJ fluid, even at high T. The CFV model predicts all of this behavior over a surprisingly wide range of the KA-LJ T,V space, fitting it with just a single set of three parameters. The CFV approach leads to a framework wherein the number of cooperating particles, and thus, the process free energy of activation, is inversely proportional to Vfree, and this is the foundation for the form of the model's volume contribution, a form that we find to hold for all systems and at all temperatures.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Chem Phys Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Chem Phys Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos