Your browser doesn't support javascript.
loading
Expanding the repertoire of DNA shape features for genome-scale studies of transcription factor binding.
Li, Jinsen; Sagendorf, Jared M; Chiu, Tsu-Pei; Pasi, Marco; Perez, Alberto; Rohs, Remo.
Afiliación
  • Li J; Computational Biology and Bioinformatics Program, Departments of Biological Sciences, Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA.
  • Sagendorf JM; Computational Biology and Bioinformatics Program, Departments of Biological Sciences, Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA.
  • Chiu TP; Computational Biology and Bioinformatics Program, Departments of Biological Sciences, Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA.
  • Pasi M; Centre for Biomolecular Sciences and School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
  • Perez A; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA.
  • Rohs R; Computational Biology and Bioinformatics Program, Departments of Biological Sciences, Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA.
Nucleic Acids Res ; 45(22): 12877-12887, 2017 Dec 15.
Article en En | MEDLINE | ID: mdl-29165643
Uncovering the mechanisms that affect the binding specificity of transcription factors (TFs) is critical for understanding the principles of gene regulation. Although sequence-based models have been used successfully to predict TF binding specificities, we found that including DNA shape information in these models improved their accuracy and interpretability. Previously, we developed a method for modeling DNA binding specificities based on DNA shape features extracted from Monte Carlo (MC) simulations. Prediction accuracies of our models, however, have not yet been compared to accuracies of models incorporating DNA shape information extracted from X-ray crystallography (XRC) data or Molecular Dynamics (MD) simulations. Here, we integrated DNA shape information extracted from MC or MD simulations and XRC data into predictive models of TF binding and compared their performance. Models that incorporated structural information consistently showed improved performance over sequence-based models regardless of data source. Furthermore, we derived and validated nine additional DNA shape features beyond our original set of four features. The expanded repertoire of 13 distinct DNA shape features, including six intra-base pair and six inter-base pair parameters and minor groove width, is available in our R/Bioconductor package DNAshapeR and enables a comprehensive structural description of the double helix on a genome-wide scale.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Factores de Transcripción / Algoritmos / ADN / Biología Computacional / Estudio de Asociación del Genoma Completo Tipo de estudio: Health_economic_evaluation / Prognostic_studies Idioma: En Revista: Nucleic Acids Res Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Factores de Transcripción / Algoritmos / ADN / Biología Computacional / Estudio de Asociación del Genoma Completo Tipo de estudio: Health_economic_evaluation / Prognostic_studies Idioma: En Revista: Nucleic Acids Res Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido