Your browser doesn't support javascript.
loading
Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy.
Amoasii, Leonela; Long, Chengzu; Li, Hui; Mireault, Alex A; Shelton, John M; Sanchez-Ortiz, Efrain; McAnally, John R; Bhattacharyya, Samadrita; Schmidt, Florian; Grimm, Dirk; Hauschka, Stephen D; Bassel-Duby, Rhonda; Olson, Eric N.
Afiliación
  • Amoasii L; Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
  • Long C; Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
  • Li H; Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
  • Mireault AA; Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
  • Shelton JM; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
  • Sanchez-Ortiz E; Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
  • McAnally JR; Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
  • Bhattacharyya S; Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
  • Schmidt F; Heidelberg University Hospital, Center for Infectious Diseases, Virology, Cluster of Excellence Cell Networks, DZIF partner, BioQuant Center, Heidelberg D-69120, Germany.
  • Grimm D; Heidelberg University Hospital, Center for Infectious Diseases, Virology, Cluster of Excellence Cell Networks, DZIF partner, BioQuant Center, Heidelberg D-69120, Germany.
  • Hauschka SD; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
  • Bassel-Duby R; Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
  • Olson EN; Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA. eric.olson@utsouthwestern.edu.
Sci Transl Med ; 9(418)2017 Nov 29.
Article en En | MEDLINE | ID: mdl-29187645
ABSTRACT
Duchenne muscular dystrophy (DMD) is a severe, progressive muscle disease caused by mutations in the dystrophin gene. The majority of DMD mutations are deletions that prematurely terminate the dystrophin protein. Deletions of exon 50 of the dystrophin gene are among the most common single exon deletions causing DMD. Such mutations can be corrected by skipping exon 51, thereby restoring the dystrophin reading frame. Using clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9), we generated a DMD mouse model by deleting exon 50. These ΔEx50 mice displayed severe muscle dysfunction, which was corrected by systemic delivery of adeno-associated virus encoding CRISPR/Cas9 genome editing components. We optimized the method for dystrophin reading frame correction using a single guide RNA that created reframing mutations and allowed skipping of exon 51. In conjunction with muscle-specific expression of Cas9, this approach restored up to 90% of dystrophin protein expression throughout skeletal muscles and the heart of ΔEx50 mice. This method of permanently bypassing DMD mutations using a single cut in genomic DNA represents a step toward clinical correction of DMD mutations and potentially those of other neuromuscular disorders.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Distrofina / Edición Génica Límite: Animals Idioma: En Revista: Sci Transl Med Asunto de la revista: CIENCIA / MEDICINA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Distrofina / Edición Génica Límite: Animals Idioma: En Revista: Sci Transl Med Asunto de la revista: CIENCIA / MEDICINA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos