Your browser doesn't support javascript.
loading
Minimally invasive laser vibrometry (MIVIB) with a floating mass transducer - A new method for objective evaluation of the middle ear demonstrated on stapes fixation.
Wales, Jeremy; Gladiné, Kilian; Van de Heyning, Paul; Topsakal, Vedat; von Unge, Magnus; Dirckx, Joris.
Afiliación
  • Wales J; Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden. Electronic address: jeremy.wales@sll.se.
  • Gladiné K; Laboratory of Biomedical Physics, University of Antwerp, Antwerp, Belgium. Electronic address: kilian.gladine@uantwerpen.be.
  • Van de Heyning P; Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, University of Antwerp, Belgium. Electronic address: paul.vandeheyning@uantwerpen.be.
  • Topsakal V; Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, University of Antwerp, Belgium. Electronic address: vedat.topsakal@uza.be.
  • von Unge M; Department of Otorhinolaryngology, Akershus University Hospital and University of Oslo, Oslo, Norway. Electronic address: magnus.von.unge@medisin.uio.no.
  • Dirckx J; Laboratory of Biomedical Physics, University of Antwerp, Antwerp, Belgium. Electronic address: joris.dirckx@uantwerpen.be.
Hear Res ; 357: 46-53, 2018 01.
Article en En | MEDLINE | ID: mdl-29190487
ABSTRACT
Ossicular fixation through otosclerosis, chronic otitis media and other pathologies, especially tympanosclerosis, are treated by surgery if hearing aids fail as an alternative. However, the best hearing outcome is often based on knowledge of the degree and location of the fixation. Objective methods to quantify the degree and position of the fixation are largely lacking. Laser vibrometry is a known method to detect ossicular fixation but clinical applicability remains limited. A new method, minimally invasive laser vibrometry (MIVIB), is presented to quantify ossicle mobility using laser vibrometry measurement through the ear canal after elevating the tympanic membrane, thus making the method feasible in minimally invasive explorative surgery. A floating mass transducer provides a clinically relevant transducer to drive ossicular vibration. This device was attached to the manubrium and drove vibrations at the same angle as the longitudinal axis of the stapes and was therefore used to assess ossicular chain mobility in a fresh-frozen temporal bone model with and without stapes fixation. The ratio between the umbo and incus long process was shown to be useful in assessing stapes fixation. The incus-to-umbo velocity ratio decreased by 15 dB when comparing the unfixated situation to stapes fixation up to 2.5 kHz. Such quantification of ossicular fixation using the incus-to-umbo velocity ratio would allow quick and objective analysis of ossicular chain fixations which will assist the surgeon in surgical planning and optimize hearing outcomes.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Estribo / Transductores de Presión / Técnicas de Diagnóstico Otológico / Oído Medio / Rayos Láser / Movimiento Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Hear Res Año: 2018 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Estribo / Transductores de Presión / Técnicas de Diagnóstico Otológico / Oído Medio / Rayos Láser / Movimiento Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Hear Res Año: 2018 Tipo del documento: Article