Your browser doesn't support javascript.
loading
Olfactory coding in the turbulent realm.
Jacob, Vincent; Monsempès, Christelle; Rospars, Jean-Pierre; Masson, Jean-Baptiste; Lucas, Philippe.
Afiliación
  • Jacob V; Institute of Ecology and Environmental Sciences, INRA, route de St Cyr, Versailles, France.
  • Monsempès C; Peuplements végétaux et bioagresseurs en milieu végétal, CIRAD, Université de la Réunion, Saint Pierre, Ile de la Réunion, France.
  • Rospars JP; Institute of Ecology and Environmental Sciences, INRA, route de St Cyr, Versailles, France.
  • Masson JB; Institute of Ecology and Environmental Sciences, INRA, route de St Cyr, Versailles, France.
  • Lucas P; Decision and Bayesian Computation, Pasteur Institute, CNRS UMR 3571, 25-28 rue du Dr Roux, 75015 Paris, France.
PLoS Comput Biol ; 13(12): e1005870, 2017 Dec.
Article en En | MEDLINE | ID: mdl-29194457
ABSTRACT
Long-distance olfactory search behaviors depend on odor detection dynamics. Due to turbulence, olfactory signals travel as bursts of variable concentration and spacing and are characterized by long-tail distributions of odor/no-odor events, challenging the computing capacities of olfactory systems. How animals encode complex olfactory scenes to track the plume far from the source remains unclear. Here we focus on the coding of the plume temporal dynamics in moths. We compare responses of olfactory receptor neurons (ORNs) and antennal lobe projection neurons (PNs) to sequences of pheromone stimuli either with white-noise patterns or with realistic turbulent temporal structures simulating a large range of distances (8 to 64 m) from the odor source. For the first time, we analyze what information is extracted by the olfactory system at large distances from the source. Neuronal responses are analyzed using linear-nonlinear models fitted with white-noise stimuli and used for predicting responses to turbulent stimuli. We found that neuronal firing rate is less correlated with the dynamic odor time course when distance to the source increases because of improper coding during long odor and no-odor events that characterize large distances. Rapid adaptation during long puffs does not preclude however the detection of puff transitions in PNs. Individual PNs but not individual ORNs encode the onset and offset of odor puffs for any temporal structure of stimuli. A higher spontaneous firing rate coupled to an inhibition phase at the end of PN responses contributes to this coding property. This allows PNs to decode the temporal structure of the odor plume at any distance to the source, an essential piece of information moths can use in their tracking behavior.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Vías Olfatorias / Conducta Apetitiva / Feromonas / Neuronas Receptoras Olfatorias / Antenas de Artrópodos Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2017 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Vías Olfatorias / Conducta Apetitiva / Feromonas / Neuronas Receptoras Olfatorias / Antenas de Artrópodos Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2017 Tipo del documento: Article País de afiliación: Francia