Your browser doesn't support javascript.
loading
Prophetic Granger Causality to infer gene regulatory networks.
Carlin, Daniel E; Paull, Evan O; Graim, Kiley; Wong, Christopher K; Bivol, Adrian; Ryabinin, Peter; Ellrott, Kyle; Sokolov, Artem; Stuart, Joshua M.
Afiliación
  • Carlin DE; University of California San Diego, Department of Medicine, La Jolla, CA, United States of America.
  • Paull EO; University of California Santa Cruz, Department of Biomolecular Engineering, Santa Cruz, CA, United States of America.
  • Graim K; University of California Santa Cruz, Department of Biomolecular Engineering, Santa Cruz, CA, United States of America.
  • Wong CK; University of California Santa Cruz, Department of Biomolecular Engineering, Santa Cruz, CA, United States of America.
  • Bivol A; University of California Santa Cruz, Department of Biomolecular Engineering, Santa Cruz, CA, United States of America.
  • Ryabinin P; University of California Santa Cruz, Department of Biomolecular Engineering, Santa Cruz, CA, United States of America.
  • Ellrott K; Oregon Health Sciences University, Department of Biomedical Engineering, Portland, OR, United States of America.
  • Sokolov A; University of California Santa Cruz, Department of Biomolecular Engineering, Santa Cruz, CA, United States of America.
  • Stuart JM; University of California Santa Cruz, Department of Biomolecular Engineering, Santa Cruz, CA, United States of America.
PLoS One ; 12(12): e0170340, 2017.
Article en En | MEDLINE | ID: mdl-29211761
ABSTRACT
We introduce a novel method called Prophetic Granger Causality (PGC) for inferring gene regulatory networks (GRNs) from protein-level time series data. The method uses an L1-penalized regression adaptation of Granger Causality to model protein levels as a function of time, stimuli, and other perturbations. When combined with a data-independent network prior, the framework outperformed all other methods submitted to the HPN-DREAM 8 breast cancer network inference challenge. Our investigations reveal that PGC provides complementary information to other approaches, raising the performance of ensemble learners, while on its own achieves moderate performance. Thus, PGC serves as a valuable new tool in the bioinformatics toolkit for analyzing temporal datasets. We investigate the general and cell-specific interactions predicted by our method and find several novel interactions, demonstrating the utility of the approach in charting new tumor wiring.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Causalidad / Biología Computacional / Redes Reguladoras de Genes Tipo de estudio: Etiology_studies / Prognostic_studies Límite: Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Causalidad / Biología Computacional / Redes Reguladoras de Genes Tipo de estudio: Etiology_studies / Prognostic_studies Límite: Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos