Your browser doesn't support javascript.
loading
Metabolome analysis reveals a role for glyceraldehyde 3-phosphate dehydrogenase in the inhibition of C. thermocellum by ethanol.
Tian, Liang; Perot, Skyler J; Stevenson, David; Jacobson, Tyler; Lanahan, Anthony A; Amador-Noguez, Daniel; Olson, Daniel G; Lynd, Lee R.
Afiliación
  • Tian L; Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755 USA.
  • Perot SJ; Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA.
  • Stevenson D; Dartmouth College, Hanover, NH 03755 USA.
  • Jacobson T; Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA.
  • Lanahan AA; University of Wisconsin-Madison, Madison, WI 53706 USA.
  • Amador-Noguez D; Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA.
  • Olson DG; University of Wisconsin-Madison, Madison, WI 53706 USA.
  • Lynd LR; Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA.
Biotechnol Biofuels ; 10: 276, 2017.
Article en En | MEDLINE | ID: mdl-29213320
ABSTRACT

BACKGROUND:

Clostridium thermocellum is a promising microorganism for conversion of cellulosic biomass to biofuel, without added enzymes; however, the low ethanol titer produced by strains developed thus far is an obstacle to industrial application.

RESULTS:

Here, we analyzed changes in the relative concentration of intracellular metabolites in response to gradual addition of ethanol to growing cultures. For C. thermocellum, we observed that ethanol tolerance, in experiments with gradual ethanol addition, was twofold higher than previously observed in response to a stepwise increase in the ethanol concentration, and appears to be due to a mechanism other than mutation. As ethanol concentrations increased, we found accumulation of metabolites upstream of the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) reaction and depletion of metabolites downstream of that reaction. This pattern was not observed in the more ethanol-tolerant organism Thermoanaerobacterium saccharolyticum. We hypothesize that the Gapdh enzyme may have different properties in the two organisms. Our hypothesis is supported by enzyme assays showing greater sensitivity of the C. thermocellum enzyme to high levels of NADH, and by the increase in ethanol tolerance and production when the T. saccharolyticum gapdh was expressed in C. thermocellum.

CONCLUSIONS:

We have demonstrated that a metabolic bottleneck occurs at the GAPDH reaction when the growth of C. thermocellum is inhibited by high levels of ethanol. We then showed that this bottleneck could be relieved by expression of the gapdh gene from T. saccharolyticum. This enzyme is a promising target for future metabolic engineering work.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Biotechnol Biofuels Año: 2017 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Biotechnol Biofuels Año: 2017 Tipo del documento: Article