Your browser doesn't support javascript.
loading
Bayesian Inference of Species Networks from Multilocus Sequence Data.
Zhang, Chi; Ogilvie, Huw A; Drummond, Alexei J; Stadler, Tanja.
Afiliación
  • Zhang C; Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland.
  • Ogilvie HA; Swiss Institute of Bioinformatics (SIB), Switzerland.
  • Drummond AJ; Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.
  • Stadler T; Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia.
Mol Biol Evol ; 35(2): 504-517, 2018 02 01.
Article en En | MEDLINE | ID: mdl-29220490
Reticulate species evolution, such as hybridization or introgression, is relatively common in nature. In the presence of reticulation, species relationships can be captured by a rooted phylogenetic network, and orthologous gene evolution can be modeled as bifurcating gene trees embedded in the species network. We present a Bayesian approach to jointly infer species networks and gene trees from multilocus sequence data. A novel birth-hybridization process is used as the prior for the species network, and we assume a multispecies network coalescent prior for the embedded gene trees. We verify the ability of our method to correctly sample from the posterior distribution, and thus to infer a species network, through simulations. To quantify the power of our method, we reanalyze two large data sets of genes from spruces and yeasts. For the three closely related spruces, we verify the previously suggested homoploid hybridization event in this clade; for the yeast data, we find extensive hybridization events. Our method is available within the BEAST 2 add-on SpeciesNetwork, and thus provides an extensible framework for Bayesian inference of reticulate evolution.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Filogenia / Técnicas Genéticas / Hibridación Genética / Modelos Genéticos Tipo de estudio: Evaluation_studies / Prognostic_studies Idioma: En Revista: Mol Biol Evol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2018 Tipo del documento: Article País de afiliación: Suiza Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Filogenia / Técnicas Genéticas / Hibridación Genética / Modelos Genéticos Tipo de estudio: Evaluation_studies / Prognostic_studies Idioma: En Revista: Mol Biol Evol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2018 Tipo del documento: Article País de afiliación: Suiza Pais de publicación: Estados Unidos