Your browser doesn't support javascript.
loading
A bioinformatics-to-clinic sequential approach to analysis of prostate cancer biomarkers using TCGA datasets and clinical samples: a new method for precision oncology?
Yoshie, Hidekazu; Sedukhina, Anna S; Minagawa, Kimino; Oda, Keiko; Ohnuma, Shigeko; Yanagisawa, Nobuyuki; Maeda, Ichiro; Takagi, Masayuki; Kudo, Hiroya; Nakazawa, Ryuto; Sasaki, Hideo; Kumai, Toshio; Chikaraishi, Tatsuya; Sato, Ko.
Afiliación
  • Yoshie H; Department of Pharmacogenomics, St. Marianna University, Kawasaki, Japan.
  • Sedukhina AS; Department of Urology, St. Marianna University, Kawasaki, Japan.
  • Minagawa K; Department of Pharmacogenomics, St. Marianna University, Kawasaki, Japan.
  • Oda K; Department of Pharmacogenomics, St. Marianna University, Kawasaki, Japan.
  • Ohnuma S; Department of Pharmacogenomics, St. Marianna University, Kawasaki, Japan.
  • Yanagisawa N; Department of Pathology, St. Marianna University, Kawasaki, Japan.
  • Maeda I; Department of Pathology, St. Marianna University, Kawasaki, Japan.
  • Takagi M; Department of Pathology, St. Marianna University, Kawasaki, Japan.
  • Kudo H; Department of Pathology, St. Marianna University, Kawasaki, Japan.
  • Nakazawa R; Department of Urology, St. Marianna University, Kawasaki, Japan.
  • Sasaki H; Department of Urology, St. Marianna University, Kawasaki, Japan.
  • Kumai T; Department of Urology, St. Marianna University, Kawasaki, Japan.
  • Chikaraishi T; Department of Pharmacogenomics, St. Marianna University, Kawasaki, Japan.
  • Sato K; Department of Urology, St. Marianna University, Kawasaki, Japan.
Oncotarget ; 8(59): 99601-99611, 2017 Nov 21.
Article en En | MEDLINE | ID: mdl-29245927
Biomarker-driven cancer therapy has met with significant clinical success. Identification of a biomarker implicated in a malignant phenotype and linked to poor clinical outcome is required if we are to develop these types of therapies. A subset of prostate adenocarcinoma (PACa) cases are treatment-resistant, making them an attractive target for such an approach. To identify target molecules implicated in shorter survival of patients with PACa, we established a bioinformatics-to-clinic sequential analysis approach, beginning with 2-step in silico analysis of a TCGA dataset for localized PACa. The effect of candidate genes identified by in silico analysis on survival was then assessed using biopsy specimens taken at the time of initial diagnosis of localized and metastatic PACa. We identified PEG10 as a candidate biomarker. Data from clinical samples suggested that increased expression of PEG10 at the time of initial diagnosis was linked to shorter survival time. Interestingly, PEG10 overexpression also correlated with expression of chromogranin A and synaptophysin, markers for neuroendocrine prostate cancer, a type of treatment-resistant prostate cancer. These results indicate that PEG10 is a novel biomarker for shorter survival of patients with PACa. Also, PEG10 expression at the time of initial diagnosis may predict focal neuroendocrine differentiation of PACa. Thus, PEG10 may be an attractive target for biomarker-driven cancer therapy. Thus, bioinformatics-to-clinic sequential analysis is a valid tool for identifying targets for precision oncology.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Oncotarget Año: 2017 Tipo del documento: Article País de afiliación: Japón Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Oncotarget Año: 2017 Tipo del documento: Article País de afiliación: Japón Pais de publicación: Estados Unidos