Your browser doesn't support javascript.
loading
Anticancer Activity of Natural and Synthetic Capsaicin Analogs.
Friedman, Jamie R; Nolan, Nicholas A; Brown, Kathleen C; Miles, Sarah L; Akers, Austin T; Colclough, Kate W; Seidler, Jessica M; Rimoldi, John M; Valentovic, Monica A; Dasgupta, Piyali.
Afiliación
  • Friedman JR; Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Missis
  • Nolan NA; Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Missis
  • Brown KC; Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Missis
  • Miles SL; Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Missis
  • Akers AT; Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Missis
  • Colclough KW; Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Missis
  • Seidler JM; Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Missis
  • Rimoldi JM; Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Missis
  • Valentovic MA; Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Missis
  • Dasgupta P; Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Missis
J Pharmacol Exp Ther ; 364(3): 462-473, 2018 03.
Article en En | MEDLINE | ID: mdl-29246887
ABSTRACT
The nutritional compound capsaicin is the major spicy ingredient of chili peppers. Although traditionally associated with analgesic activity, recent studies have shown that capsaicin has profound antineoplastic effects in several types of human cancers. However, the applications of capsaicin as a clinically viable drug are limited by its unpleasant side effects, such as gastric irritation, stomach cramps, and burning sensation. This has led to extensive research focused on the identification and rational design of second-generation capsaicin analogs, which possess greater bioactivity than capsaicin. A majority of these natural capsaicinoids and synthetic capsaicin analogs have been studied for their pain-relieving activity. Only a few of these capsaicin analogs have been investigated for their anticancer activity in cell culture and animal models. The present review summarizes the current knowledge of the growth-inhibitory activity of natural capsaicinoids and synthetic capsaicin analogs. Future studies that examine the anticancer activity of a greater number of capsaicin analogs represent novel strategies in the treatment of human cancers.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Productos Biológicos / Capsaicina / Antineoplásicos Límite: Animals / Humans Idioma: En Revista: J Pharmacol Exp Ther Año: 2018 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Productos Biológicos / Capsaicina / Antineoplásicos Límite: Animals / Humans Idioma: En Revista: J Pharmacol Exp Ther Año: 2018 Tipo del documento: Article