Your browser doesn't support javascript.
loading
ProbAnnoWeb and ProbAnnoPy: probabilistic annotation and gap-filling of metabolic reconstructions.
King, Brendan; Farrah, Terry; Richards, Matthew A; Mundy, Michael; Simeonidis, Evangelos; Price, Nathan D.
Afiliación
  • King B; Institute for Systems Biology, Seattle, WA 98102, USA.
  • Farrah T; Institute for Systems Biology, Seattle, WA 98102, USA.
  • Richards MA; Institute for Systems Biology, Seattle, WA 98102, USA.
  • Mundy M; Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA.
  • Simeonidis E; Institute for Systems Biology, Seattle, WA 98102, USA.
  • Price ND; Institute for Systems Biology, Seattle, WA 98102, USA.
Bioinformatics ; 34(9): 1594-1596, 2018 05 01.
Article en En | MEDLINE | ID: mdl-29267848
Summary: Gap-filling is a necessary step to produce quality genome-scale metabolic reconstructions capable of flux-balance simulation. Most available gap-filling tools use an organism-agnostic approach, where reactions are selected from a database to fill gaps without consideration of the target organism. Conversely, our likelihood based gap-filling with probabilistic annotations selects candidate reactions based on a likelihood score derived specifically from the target organism's genome. Here, we present two new implementations of probabilistic annotation and likelihood based gap-filling: a web service called ProbAnnoWeb, and a standalone python package called ProbAnnoPy. Availability and implementation: Our tools are available as a web service with no installation needed (ProbAnnoWeb) at probannoweb.systemsbiology.net, and as a local python package implementation (ProbAnnoPy) at github.com/PriceLab/probannopy. Contact: evangelos.simeonidis@systemsbiology.org or nathan.price@systemsbiology.org. Supplementary information: Supplementary data are available at Bioinformatics online.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Genoma Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Genoma Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido