ProbAnnoWeb and ProbAnnoPy: probabilistic annotation and gap-filling of metabolic reconstructions.
Bioinformatics
; 34(9): 1594-1596, 2018 05 01.
Article
en En
| MEDLINE
| ID: mdl-29267848
Summary: Gap-filling is a necessary step to produce quality genome-scale metabolic reconstructions capable of flux-balance simulation. Most available gap-filling tools use an organism-agnostic approach, where reactions are selected from a database to fill gaps without consideration of the target organism. Conversely, our likelihood based gap-filling with probabilistic annotations selects candidate reactions based on a likelihood score derived specifically from the target organism's genome. Here, we present two new implementations of probabilistic annotation and likelihood based gap-filling: a web service called ProbAnnoWeb, and a standalone python package called ProbAnnoPy. Availability and implementation: Our tools are available as a web service with no installation needed (ProbAnnoWeb) at probannoweb.systemsbiology.net, and as a local python package implementation (ProbAnnoPy) at github.com/PriceLab/probannopy. Contact: evangelos.simeonidis@systemsbiology.org or nathan.price@systemsbiology.org. Supplementary information: Supplementary data are available at Bioinformatics online.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Genoma
Idioma:
En
Revista:
Bioinformatics
Asunto de la revista:
INFORMATICA MEDICA
Año:
2018
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Reino Unido