Your browser doesn't support javascript.
loading
Scalable Green Synthesis and Full-Scale Test of the Metal-Organic Framework CAU-10-H for Use in Adsorption-Driven Chillers.
Lenzen, Dirk; Bendix, Phillip; Reinsch, Helge; Fröhlich, Dominik; Kummer, Harry; Möllers, Marc; Hügenell, Philipp P C; Gläser, Roger; Henninger, Stefan; Stock, Norbert.
Afiliación
  • Lenzen D; Christian-Albrechts-Universität Kiel, Institut für Anorganische Chemie, Max-Eyth-Str. 2, 24118, Kiel, Germany.
  • Bendix P; Department Heating and Cooling Technologies, Group Sorption Materials, Fraunhofer-Institut für Solare Energiesysteme ISE, Heidenhofstrasse 2, 79110, Freiburg, Germany.
  • Reinsch H; Christian-Albrechts-Universität Kiel, Institut für Anorganische Chemie, Max-Eyth-Str. 2, 24118, Kiel, Germany.
  • Fröhlich D; Department Heating and Cooling Technologies, Group Sorption Materials, Fraunhofer-Institut für Solare Energiesysteme ISE, Heidenhofstrasse 2, 79110, Freiburg, Germany.
  • Kummer H; Department Heating and Cooling Technologies, Group Sorption Materials, Fraunhofer-Institut für Solare Energiesysteme ISE, Heidenhofstrasse 2, 79110, Freiburg, Germany.
  • Möllers M; Department Heating and Cooling Technologies, Group Equipment and Component Development, Fraunhofer-Institut für Solare Energiesysteme ISE, Heidenhofstrasse 2, 79110, Freiburg, Germany.
  • Hügenell PPC; Department Heating and Cooling Technologies, Group Sorption Materials, Fraunhofer-Institut für Solare Energiesysteme ISE, Heidenhofstrasse 2, 79110, Freiburg, Germany.
  • Gläser R; Institut für Technische Chemie, Universität Leipzig, Linnéstraße 3, 04103, Leipzig, Germany.
  • Henninger S; Department Heating and Cooling Technologies, Group Sorption Materials, Fraunhofer-Institut für Solare Energiesysteme ISE, Heidenhofstrasse 2, 79110, Freiburg, Germany.
  • Stock N; Christian-Albrechts-Universität Kiel, Institut für Anorganische Chemie, Max-Eyth-Str. 2, 24118, Kiel, Germany.
Adv Mater ; 30(6)2018 Feb.
Article en En | MEDLINE | ID: mdl-29271497
ABSTRACT
The demand for cooling devices has increased during the last years and this trend will continue. Adsorption-driven chillers (ADCs) using water as the working fluid and low temperature waste energy for regeneration are an environmentally friendly alternative to currently employed cooling devices and can concurrently help to dramatically decrease energy consumption. Due to the ideal water sorption behavior and proven lifetime stability of [Al(OH)(m-BDC)] ∙ x H2 O (m-BDC2- = 1,3-benzenedicarboxylate), also denoted CAU-10-H, a green very robust synthesis process under reflux, with high yields up to 95% is developed and scaled up to 12 kg-scale. Shaping of the adsorbent is demonstrated, which is important for an application. Thus monoliths and coatings of CAU-10-H are produced using a water-based binder. The composites are thoroughly characterized toward their mechanical stability and water sorption behavior. Finally a full-scale heat exchanger is coated and tested under ADC working conditions. Fast adsorption dynamic leads to a high power output and a good power density. A low regeneration temperature of only 70 °C is demonstrated, allowing the use of low temperature sources like waste heat and solar thermal collectors.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2018 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2018 Tipo del documento: Article País de afiliación: Alemania