Your browser doesn't support javascript.
loading
High energy proton induced radiation damage of rare earth permanent magnet quadrupoles.
Schanz, M; Endres, M; Löwe, K; Lienig, T; Deppert, O; Lang, P M; Varentsov, D; Hoffmann, D H H; Gutfleisch, O.
Afiliación
  • Schanz M; GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany.
  • Endres M; Technische Universität Darmstadt, Darmstadt, Germany.
  • Löwe K; Technische Universität Darmstadt, Darmstadt, Germany.
  • Lienig T; Technische Universität Darmstadt, Darmstadt, Germany.
  • Deppert O; GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany.
  • Lang PM; Technische Universität Darmstadt, Darmstadt, Germany.
  • Varentsov D; GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany.
  • Hoffmann DHH; Technische Universität Darmstadt, Darmstadt, Germany.
  • Gutfleisch O; Technische Universität Darmstadt, Darmstadt, Germany.
Rev Sci Instrum ; 88(12): 125103, 2017 Dec.
Article en En | MEDLINE | ID: mdl-29289214
Permanent magnet quadrupoles (PMQs) are an alternative to common electromagnetic quadrupoles especially for fixed rigidity beam transport scenarios at particle accelerators. Using those magnets for experimental setups can result in certain scenarios, in which a PMQ itself may be exposed to a large amount of primary and secondary particles with a broad energy spectrum, interacting with the magnetic material and affecting its magnetic properties. One specific scenario is proton microscopy, where a proton beam traverses an object and a collimator in which a part of the beam is scattered and deflected into PMQs used as part of a diagnostic system. During the commissioning of the PRIOR (Proton Microscope for Facility for Antiproton and Ion Research) high energy proton microscope facility prototype at Gesellschaft für Schwerionenforschung in 2014, a significant reduction of the image quality was observed which was partially attributed to the demagnetization of the used PMQ lenses and the corresponding decrease of the field quality. In order to study this phenomenon, Monte Carlo simulations were carried out and spare units manufactured from the same magnetic material-single wedges and a fully assembled PMQ module-were deliberately irradiated by a 3.6 GeV intense proton beam. The performed investigations have shown that in proton radiography applications the above described scattering may result in a high irradiation dose in the PMQ magnets. This did not only decrease the overall magnetic strength of the PMQs but also caused a significant degradation of the field quality of an assembled PMQ module by increasing the parasitic multipole field harmonics which effectively makes PMQs impractical for proton radiography applications or similar scenarios.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Rev Sci Instrum Año: 2017 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Rev Sci Instrum Año: 2017 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos