Your browser doesn't support javascript.
loading
Speed breeding is a powerful tool to accelerate crop research and breeding.
Watson, Amy; Ghosh, Sreya; Williams, Matthew J; Cuddy, William S; Simmonds, James; Rey, María-Dolores; Asyraf Md Hatta, M; Hinchliffe, Alison; Steed, Andrew; Reynolds, Daniel; Adamski, Nikolai M; Breakspear, Andy; Korolev, Andrey; Rayner, Tracey; Dixon, Laura E; Riaz, Adnan; Martin, William; Ryan, Merrill; Edwards, David; Batley, Jacqueline; Raman, Harsh; Carter, Jeremy; Rogers, Christian; Domoney, Claire; Moore, Graham; Harwood, Wendy; Nicholson, Paul; Dieters, Mark J; DeLacy, Ian H; Zhou, Ji; Uauy, Cristobal; Boden, Scott A; Park, Robert F; Wulff, Brande B H; Hickey, Lee T.
Afiliación
  • Watson A; Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, Queensland, Australia.
  • Ghosh S; John Innes Centre, Norwich Research Park, Norwich, UK.
  • Williams MJ; Plant Breeding Institute, University of Sydney, Cobbitty, New South Wales, Australia.
  • Cuddy WS; Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, New South Wales, Australia.
  • Simmonds J; John Innes Centre, Norwich Research Park, Norwich, UK.
  • Rey MD; John Innes Centre, Norwich Research Park, Norwich, UK.
  • Asyraf Md Hatta M; John Innes Centre, Norwich Research Park, Norwich, UK.
  • Hinchliffe A; Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia.
  • Steed A; John Innes Centre, Norwich Research Park, Norwich, UK.
  • Reynolds D; John Innes Centre, Norwich Research Park, Norwich, UK.
  • Adamski NM; Earlham Institute, Norwich Research Park, Norwich, UK.
  • Breakspear A; John Innes Centre, Norwich Research Park, Norwich, UK.
  • Korolev A; John Innes Centre, Norwich Research Park, Norwich, UK.
  • Rayner T; John Innes Centre, Norwich Research Park, Norwich, UK.
  • Dixon LE; John Innes Centre, Norwich Research Park, Norwich, UK.
  • Riaz A; John Innes Centre, Norwich Research Park, Norwich, UK.
  • Martin W; Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, Queensland, Australia.
  • Ryan M; Department of Agriculture and Fisheries, Hermitage Research Facility, Warwick, Queensland, Australia.
  • Edwards D; Department of Agriculture and Fisheries, Hermitage Research Facility, Warwick, Queensland, Australia.
  • Batley J; School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, Western Australia, Australia.
  • Raman H; School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, Western Australia, Australia.
  • Carter J; Wagga Wagga Agricultural Institute, NSW Department of Primary Industries, Wagga Wagga, New South Wales, Australia.
  • Rogers C; John Innes Centre, Norwich Research Park, Norwich, UK.
  • Domoney C; John Innes Centre, Norwich Research Park, Norwich, UK.
  • Moore G; John Innes Centre, Norwich Research Park, Norwich, UK.
  • Harwood W; John Innes Centre, Norwich Research Park, Norwich, UK.
  • Nicholson P; John Innes Centre, Norwich Research Park, Norwich, UK.
  • Dieters MJ; John Innes Centre, Norwich Research Park, Norwich, UK.
  • DeLacy IH; School of Agriculture and Food Sciences, University of Queensland, St Lucia, Queensland, Australia.
  • Zhou J; School of Agriculture and Food Sciences, University of Queensland, St Lucia, Queensland, Australia.
  • Uauy C; John Innes Centre, Norwich Research Park, Norwich, UK.
  • Boden SA; Earlham Institute, Norwich Research Park, Norwich, UK.
  • Park RF; John Innes Centre, Norwich Research Park, Norwich, UK.
  • Wulff BBH; John Innes Centre, Norwich Research Park, Norwich, UK.
  • Hickey LT; Plant Breeding Institute, University of Sydney, Cobbitty, New South Wales, Australia.
Nat Plants ; 4(1): 23-29, 2018 01.
Article en En | MEDLINE | ID: mdl-29292376
ABSTRACT
The growing human population and a changing environment have raised significant concern for global food security, with the current improvement rate of several important crops inadequate to meet future demand 1 . This slow improvement rate is attributed partly to the long generation times of crop plants. Here, we present a method called 'speed breeding', which greatly shortens generation time and accelerates breeding and research programmes. Speed breeding can be used to achieve up to 6 generations per year for spring wheat (Triticum aestivum), durum wheat (T. durum), barley (Hordeum vulgare), chickpea (Cicer arietinum) and pea (Pisum sativum), and 4 generations for canola (Brassica napus), instead of 2-3 under normal glasshouse conditions. We demonstrate that speed breeding in fully enclosed, controlled-environment growth chambers can accelerate plant development for research purposes, including phenotyping of adult plant traits, mutant studies and transformation. The use of supplemental lighting in a glasshouse environment allows rapid generation cycling through single seed descent (SSD) and potential for adaptation to larger-scale crop improvement programs. Cost saving through light-emitting diode (LED) supplemental lighting is also outlined. We envisage great potential for integrating speed breeding with other modern crop breeding technologies, including high-throughput genotyping, genome editing and genomic selection, accelerating the rate of crop improvement.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Hordeum / Triticum / Pisum sativum / Brassica napus / Cicer Idioma: En Revista: Nat Plants Año: 2018 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Hordeum / Triticum / Pisum sativum / Brassica napus / Cicer Idioma: En Revista: Nat Plants Año: 2018 Tipo del documento: Article País de afiliación: Australia
...