A Data-Driven Decision-Support Tool for Population Health Policies.
Stud Health Technol Inform
; 245: 332-336, 2017.
Article
en En
| MEDLINE
| ID: mdl-29295110
Epidemiological models are key tools in assessing intervention policies for population health management. Statistical models, fitted with survey or health system data, can be combined with lab and field studies to provide reliable predictions of future population-level disease dynamics distributions and the effects of interventions. All too often, however, the end result of epidemiological modeling and cost-effectiveness studies is in the form of a report or journal paper. These are inherently limited in their coverage of locations, policy options, and derived outcome measures. Here, we describe a tool to support population health policy planning. The tool allows users to explore simulations of various policies, to view and compare interventions spanning multiple variables, time points, and locations. The design's modular architecture, and data representation separate the modeling methods, the outcome measures calculations, and the visualizations, making each component easily replaceable. These advantages make it extremely versatile and suitable for multiple uses.
Palabras clave
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Política Pública
/
Modelos Estadísticos
/
Política de Salud
Tipo de estudio:
Prognostic_studies
/
Risk_factors_studies
Aspecto:
Determinantes_sociais_saude
/
Equity_inequality
Límite:
Humans
Idioma:
En
Revista:
Stud Health Technol Inform
Asunto de la revista:
INFORMATICA MEDICA
/
PESQUISA EM SERVICOS DE SAUDE
Año:
2017
Tipo del documento:
Article
País de afiliación:
Israel
Pais de publicación:
Países Bajos