Your browser doesn't support javascript.
loading
A Data-Driven Decision-Support Tool for Population Health Policies.
Chorev, Michal; Shpigelman, Lavi; Bak, Peter; Yaeli, Avi; Michael, Edwin; Goldschmidt, Ya'ara.
Afiliación
  • Chorev M; IBM Research - Haifa, Israel.
  • Shpigelman L; IBM Research - Haifa, Israel.
  • Bak P; IBM Watson Health, Haifa, Israel.
  • Yaeli A; IBM Watson Health, Haifa, Israel.
  • Michael E; University of Notre Dame, Indiana, USA.
  • Goldschmidt Y; IBM Research - Haifa, Israel.
Stud Health Technol Inform ; 245: 332-336, 2017.
Article en En | MEDLINE | ID: mdl-29295110
Epidemiological models are key tools in assessing intervention policies for population health management. Statistical models, fitted with survey or health system data, can be combined with lab and field studies to provide reliable predictions of future population-level disease dynamics distributions and the effects of interventions. All too often, however, the end result of epidemiological modeling and cost-effectiveness studies is in the form of a report or journal paper. These are inherently limited in their coverage of locations, policy options, and derived outcome measures. Here, we describe a tool to support population health policy planning. The tool allows users to explore simulations of various policies, to view and compare interventions spanning multiple variables, time points, and locations. The design's modular architecture, and data representation separate the modeling methods, the outcome measures calculations, and the visualizations, making each component easily replaceable. These advantages make it extremely versatile and suitable for multiple uses.
Asunto(s)
Palabras clave
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Política Pública / Modelos Estadísticos / Política de Salud Tipo de estudio: Prognostic_studies / Risk_factors_studies Aspecto: Determinantes_sociais_saude / Equity_inequality Límite: Humans Idioma: En Revista: Stud Health Technol Inform Asunto de la revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Año: 2017 Tipo del documento: Article País de afiliación: Israel Pais de publicación: Países Bajos
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Política Pública / Modelos Estadísticos / Política de Salud Tipo de estudio: Prognostic_studies / Risk_factors_studies Aspecto: Determinantes_sociais_saude / Equity_inequality Límite: Humans Idioma: En Revista: Stud Health Technol Inform Asunto de la revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Año: 2017 Tipo del documento: Article País de afiliación: Israel Pais de publicación: Países Bajos