Your browser doesn't support javascript.
loading
Sequential Probability Ratio Testing with Power Projective Base Method Improves Decision-Making for BCI.
Liu, Rong; Wang, Yongxuan; Wu, Xinyu; Cheng, Jun.
Afiliación
  • Liu R; Biomedical Engineering Department, Dalian University of Technology, Dalian, Liaoning 116024, China.
  • Wang Y; Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, China.
  • Wu X; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
  • Cheng J; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
Comput Math Methods Med ; 2017: 2948742, 2017.
Article en En | MEDLINE | ID: mdl-29348781
Obtaining a fast and reliable decision is an important issue in brain-computer interfaces (BCI), particularly in practical real-time applications such as wheelchair or neuroprosthetic control. In this study, the EEG signals were firstly analyzed with a power projective base method. Then we were applied a decision-making model, the sequential probability ratio testing (SPRT), for single-trial classification of motor imagery movement events. The unique strength of this proposed classification method lies in its accumulative process, which increases the discriminative power as more and more evidence is observed over time. The properties of the method were illustrated on thirteen subjects' recordings from three datasets. Results showed that our proposed power projective method outperformed two benchmark methods for every subject. Moreover, with sequential classifier, the accuracies across subjects were significantly higher than that with nonsequential ones. The average maximum accuracy of the SPRT method was 84.1%, as compared with 82.3% accuracy for the sequential Bayesian (SB) method. The proposed SPRT method provides an explicit relationship between stopping time, thresholds, and error, which is important for balancing the time-accuracy trade-off. These results suggest SPRT would be useful in speeding up decision-making while trading off errors in BCI.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Señales Asistido por Computador / Toma de Decisiones / Interfaces Cerebro-Computador / Aprendizaje Automático Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Comput Math Methods Med Asunto de la revista: INFORMATICA MEDICA Año: 2017 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Señales Asistido por Computador / Toma de Decisiones / Interfaces Cerebro-Computador / Aprendizaje Automático Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Comput Math Methods Med Asunto de la revista: INFORMATICA MEDICA Año: 2017 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos