Your browser doesn't support javascript.
loading
A stand-alone fiber-coupled single-photon source.
Schlehahn, Alexander; Fischbach, Sarah; Schmidt, Ronny; Kaganskiy, Arsenty; Strittmatter, André; Rodt, Sven; Heindel, Tobias; Reitzenstein, Stephan.
Afiliación
  • Schlehahn A; Institut für Festkörperphysik, Technische Universität Berlin, 10623, Berlin, Germany.
  • Fischbach S; Institut für Festkörperphysik, Technische Universität Berlin, 10623, Berlin, Germany.
  • Schmidt R; Institut für Festkörperphysik, Technische Universität Berlin, 10623, Berlin, Germany.
  • Kaganskiy A; Institut für Festkörperphysik, Technische Universität Berlin, 10623, Berlin, Germany.
  • Strittmatter A; Institut für Festkörperphysik, Technische Universität Berlin, 10623, Berlin, Germany.
  • Rodt S; Abteilung für Halbleiterepitaxie, Otto-von-Guericke Universität, 39106, Magdeburg, Germany.
  • Heindel T; Institut für Festkörperphysik, Technische Universität Berlin, 10623, Berlin, Germany.
  • Reitzenstein S; Institut für Festkörperphysik, Technische Universität Berlin, 10623, Berlin, Germany. tobias.heindel@tu-berlin.de.
Sci Rep ; 8(1): 1340, 2018 01 22.
Article en En | MEDLINE | ID: mdl-29358583
In this work, we present a stand-alone and fiber-coupled quantum-light source. The plug-and-play device is based on an optically driven quantum dot delivering single photons via an optical fiber. The quantum dot is deterministically integrated in a monolithic microlens which is precisely coupled to the core of an optical fiber via active optical alignment and epoxide adhesive bonding. The rigidly coupled fiber-emitter assembly is integrated in a compact Stirling cryocooler with a base temperature of 35 K. We benchmark our practical quantum device via photon auto-correlation measurements revealing g(2)(0) = 0.07 ± 0.05 under continuous-wave excitation and we demonstrate triggered non-classical light at a repetition rate of 80 MHz. The long-term stability of our quantum light source is evaluated by endurance tests showing that the fiber-coupled quantum dot emission is stable within 4% over several successive cool-down/warm-up cycles. Additionally, we demonstrate non-classical photon emission for a user-intervention-free 100-hour test run and stable single-photon count rates up to 11.7 kHz with a standard deviation of 4%.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2018 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2018 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido