Your browser doesn't support javascript.
loading
Predicting future learning from baseline network architecture.
Mattar, Marcelo G; Wymbs, Nicholas F; Bock, Andrew S; Aguirre, Geoffrey K; Grafton, Scott T; Bassett, Danielle S.
Afiliación
  • Mattar MG; Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
  • Wymbs NF; Human Brain Physiology and Stimulation Laboratory, Department of Physical Medicine and Rehabilitation, Johns Hopkins Medical Institution, Baltimore, MD, USA.
  • Bock AS; Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • Aguirre GK; Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • Grafton ST; Department of Psychological and Brain Sciences and UCSB Brain Imaging Center, University of California, Santa Barbara, Santa Barbara, CA, USA.
  • Bassett DS; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address: ds
Neuroimage ; 172: 107-117, 2018 05 15.
Article en En | MEDLINE | ID: mdl-29366697
ABSTRACT
Human behavior and cognition result from a complex pattern of interactions between brain regions. The flexible reconfiguration of these patterns enables behavioral adaptation, such as the acquisition of a new motor skill. Yet, the degree to which these reconfigurations depend on the brain's baseline sensorimotor integration is far from understood. Here, we asked whether spontaneous fluctuations in sensorimotor networks at baseline were predictive of individual differences in future learning. We analyzed functional MRI data from 19 participants prior to six weeks of training on a new motor skill. We found that visual-motor connectivity was inversely related to learning rate sensorimotor autonomy at baseline corresponded to faster learning in the future. Using three additional scans, we found that visual-motor connectivity at baseline is a relatively stable individual trait. These results suggest that individual differences in motor skill learning can be predicted from sensorimotor autonomy at baseline prior to task execution.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Encéfalo / Individualidad / Aprendizaje / Red Nerviosa Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Adult / Female / Humans / Male Idioma: En Revista: Neuroimage Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Encéfalo / Individualidad / Aprendizaje / Red Nerviosa Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Adult / Female / Humans / Male Idioma: En Revista: Neuroimage Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos