Your browser doesn't support javascript.
loading
Modulating the Catalytic Activity of Enzyme-like Nanoparticles Through their Surface Functionalization.
Cao-Milán, Roberto; He, Luke D; Shorkey, Spencer; Tonga, Gulen Y; Wang, Li-Sheng; Zhang, Xianzhi; Uddin, Imad; Das, Riddha; Sulak, Mine; Rotello, Vincent M.
Afiliación
  • Cao-Milán R; Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA.
  • He LD; Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA.
  • Shorkey S; Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA.
  • Tonga GY; Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA.
  • Wang LS; Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA.
  • Zhang X; Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA.
  • Uddin I; Department of Chemistry, Hazara University, Mansehra 21120, Pakistan.
  • Das R; Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA.
  • Sulak M; School of Applied Science, Pamukkale University, 20600, Çivril, Denizli, Turkey.
  • Rotello VM; Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA.
Mol Syst Des Eng ; 2(5): 624-628, 2017 Dec 01.
Article en En | MEDLINE | ID: mdl-29430303
The inclusion of transition metal catalysts into nanoparticle scaffolds permits the creation of catalytic nanosystems (nanozymes) able to imitate the behaviour of natural enzymes. Here we report the fabrication of a family of nanozymes comprised of bioorthogonal ruthenium catalysts inserted in the protective monolayer of gold nanoparticles. By introducing simple modifications to the functional groups at the surface of the nanozymes, we have demonstrated control over the kinetic mechanism of our system. Cationic nanozymes with hydrophobic surface functionalities tend to replicate the classical Michaelis Menten model, while those with polar groups display substrate inhibition behaviour, a key mechanism present in 20 % of natural enzymes. The structural parameters described herein can be used for creating artificial nanosystems that mimic the complexity observed in cell machinery.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Mol Syst Des Eng Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Mol Syst Des Eng Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido