Your browser doesn't support javascript.
loading
Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data.
Zhou, Pengcheng; Resendez, Shanna L; Rodriguez-Romaguera, Jose; Jimenez, Jessica C; Neufeld, Shay Q; Giovannucci, Andrea; Friedrich, Johannes; Pnevmatikakis, Eftychios A; Stuber, Garret D; Hen, Rene; Kheirbek, Mazen A; Sabatini, Bernardo L; Kass, Robert E; Paninski, Liam.
Afiliación
  • Zhou P; Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, United States.
  • Resendez SL; Department of Statistics, Columbia University, New York, United States.
  • Rodriguez-Romaguera J; Machine Learning Department, Carnegie Mellon University, Pittsburgh, United States.
  • Jimenez JC; Grossman Center for the Statistics of Mind, Columbia University, New York, United States.
  • Neufeld SQ; Center for Theoretical Neuroscience, Columbia University, New York, United States.
  • Giovannucci A; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, United States.
  • Friedrich J; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, United States.
  • Pnevmatikakis EA; Department of Neuroscience, Columbia University, New York, United States.
  • Stuber GD; Division of Integrative Neuroscience, Department of Psychiatry, New York State Psychiatric Institute, New York, United States.
  • Hen R; Department of Psychiatry & Pharmacology, Columbia University, New York, United States.
  • Kheirbek MA; Department of Neurobiology, Harvard Medical School, Howard Hughes Medical Institute, Boston, United States.
  • Sabatini BL; Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, United States.
  • Kass RE; Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, United States.
  • Paninski L; Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, United States.
Elife ; 72018 02 22.
Article en En | MEDLINE | ID: mdl-29469809
ABSTRACT
In vivo calcium imaging through microendoscopic lenses enables imaging of previously inaccessible neuronal populations deep within the brains of freely moving animals. However, it is computationally challenging to extract single-neuronal activity from microendoscopic data, because of the very large background fluctuations and high spatial overlaps intrinsic to this recording modality. Here, we describe a new constrained matrix factorization approach to accurately separate the background and then demix and denoise the neuronal signals of interest. We compared the proposed method against previous independent components analysis and constrained nonnegative matrix factorization approaches. On both simulated and experimental data recorded from mice, our method substantially improved the quality of extracted cellular signals and detected more well-isolated neural signals, especially in noisy data regimes. These advances can in turn significantly enhance the statistical power of downstream analyses, and ultimately improve scientific conclusions derived from microendoscopic data.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Grabación en Video / Procesamiento de Imagen Asistido por Computador / Encéfalo / Señalización del Calcio / Endoscopía / Neuronas Límite: Animals Idioma: En Revista: Elife Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Grabación en Video / Procesamiento de Imagen Asistido por Computador / Encéfalo / Señalización del Calcio / Endoscopía / Neuronas Límite: Animals Idioma: En Revista: Elife Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos