Your browser doesn't support javascript.
loading
2:2 Complexes from Diphenylpyridiniums and Cucurbit[8]uril: Encapsulation-Promoted Dimerization of Electrostatically Repulsing Pyridiniums.
Yang, Bo; Yu, Shang-Bo; Wang, Hui; Zhang, Dan-Wei; Li, Zhan-Ting.
Afiliación
  • Yang B; Department of Chemistry, Collaborative Innovation Centre of, Chemistry for Energy Materials (iChEM), Shanghai Key, Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai, 200433, P.R. China.
  • Yu SB; Department of Chemistry, Collaborative Innovation Centre of, Chemistry for Energy Materials (iChEM), Shanghai Key, Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai, 200433, P.R. China.
  • Wang H; Department of Chemistry, Collaborative Innovation Centre of, Chemistry for Energy Materials (iChEM), Shanghai Key, Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai, 200433, P.R. China.
  • Zhang DW; Department of Chemistry, Collaborative Innovation Centre of, Chemistry for Energy Materials (iChEM), Shanghai Key, Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai, 200433, P.R. China.
  • Li ZT; Department of Chemistry, Collaborative Innovation Centre of, Chemistry for Energy Materials (iChEM), Shanghai Key, Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai, 200433, P.R. China.
Chem Asian J ; 13(10): 1312-1317, 2018 May 18.
Article en En | MEDLINE | ID: mdl-29480650
Rigid linear compounds G1 and G2, which contained two 4-phenylpyridinium (PhPy+ ) units, have been prepared to investigate their binding with cucurbit[8]uril (CB[8]). X-ray crystallographic structures revealed that in the solid state both compounds were included by CB[8], through antiparallel stacking, to form 2:2 quaternary complexes (G1)2 @(CB[8])2 and (G2)2 @(CB[8])2 . For the former complex, CB[8] entrapped G1 by holding two heterodimers of its Py+ and benzyl units, which were at opposite ends of the backbone. In contrast, for the first time, the second complex disclosed parallel stacking of two cationic Py+ units of G2 in the cavity of CB[8] in the solid state, despite the generation of important electrostatic repulsion. Isothermal titrations in water afforded high apparent association constants of 4.36×106 and 6.43×106 m-1 for 1:1 complexes G1@CB[8] and G2@CB[8], respectively, and 1 H NMR spectroscopy experiments in D2 O confirmed a similar stacking pattern to that observed in the solid state. A previous study and crystal structures of the 2:1 complexes formed between three new controls, G3-5, and CB[8] did not display such unusual stacking of the cationic Py+ unit; this may be attributed to the multivalency of the two CB[8] encapsulation interactions.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Chem Asian J Año: 2018 Tipo del documento: Article Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Chem Asian J Año: 2018 Tipo del documento: Article Pais de publicación: Alemania