Your browser doesn't support javascript.
loading
Protein kinase N1 critically regulates cerebellar development and long-term function.
zur Nedden, Stephanie; Eith, Rafaela; Schwarzer, Christoph; Zanetti, Lucia; Seitter, Hartwig; Fresser, Friedrich; Koschak, Alexandra; Cameron, Angus Jm; Parker, Peter J; Baier, Gottfried; Baier-Bitterlich, Gabriele.
Afiliación
  • zur Nedden S; Biocenter, Division of Neurobiochemistry, and.
  • Eith R; Biocenter, Division of Neurobiochemistry, and.
  • Schwarzer C; Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria.
  • Zanetti L; Institute of Pharmacy, Pharmacology and Toxicology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.
  • Seitter H; Institute of Pharmacy, Pharmacology and Toxicology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.
  • Fresser F; Department for Pharmacology and Genetics, Division of Translational Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria.
  • Koschak A; Institute of Pharmacy, Pharmacology and Toxicology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.
  • Cameron AJ; Kinase Biology Laboratory, John Vane Science Centre, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
  • Parker PJ; Francis Crick Institute, London, United Kingdom.
  • Baier G; Division of Cancer Studies, King's College London, London, United Kingdom.
  • Baier-Bitterlich G; Department for Pharmacology and Genetics, Division of Translational Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria.
J Clin Invest ; 128(5): 2076-2088, 2018 05 01.
Article en En | MEDLINE | ID: mdl-29494346
ABSTRACT
Increasing evidence suggests that synapse dysfunctions are a major determinant of several neurodevelopmental and neurodegenerative diseases. Here we identify protein kinase N1 (PKN1) as a novel key player in fine-tuning the balance between axonal outgrowth and presynaptic differentiation in the parallel fiber-forming (PF-forming) cerebellar granule cells (Cgcs). Postnatal Pkn1-/- animals showed a defective PF-Purkinje cell (PF-PC) synapse formation. In vitro, Pkn1-/- Cgcs exhibited deregulated axonal outgrowth, elevated AKT phosphorylation, and higher levels of neuronal differentiation-2 (NeuroD2), a transcription factor preventing presynaptic maturation. Concomitantly, Pkn1-/- Cgcs had a reduced density of presynaptic sites. By inhibiting AKT with MK-2206 and siRNA-mediated knockdown, we found that AKT hyperactivation is responsible for the elongated axons, higher NeuroD2 levels, and reduced density of presynaptic specifications in Pkn1-/- Cgcs. In line with our in vitro data, Pkn1-/- mice showed AKT hyperactivation, elevated NeuroD2 levels, and reduced expression of PF-PC synaptic markers during stages of PF maturation in vivo. The long-term effect of Pkn1 knockout was further seen in cerebellar atrophy and mild ataxia. In summary, our results demonstrate that PKN1 functions as a developmentally active gatekeeper of AKT activity, thereby fine-tuning axonal outgrowth and presynaptic differentiation of Cgcs and subsequently the correct PF-PC synapse formation.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Células de Purkinje / Axones / Sinapsis / Proteína Quinasa C / Proyección Neuronal Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: J Clin Invest Año: 2018 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Células de Purkinje / Axones / Sinapsis / Proteína Quinasa C / Proyección Neuronal Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: J Clin Invest Año: 2018 Tipo del documento: Article