Your browser doesn't support javascript.
loading
Label-free in-flow detection of receptor recognition motifs on the biomolecular corona of nanoparticles.
Gianneli, M; Polo, E; Lopez, H; Castagnola, V; Aastrup, T; Dawson, K A.
Afiliación
  • Gianneli M; Attana AB, Greta Arwidssons Väg 21, SE-11419 Stockholm, Sweden.
  • Polo E; Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Dublin, Ireland. kenneth.a.dawson@cbni.ucd.ie.
  • Lopez H; Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Dublin, Ireland. kenneth.a.dawson@cbni.ucd.ie.
  • Castagnola V; Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Dublin, Ireland. kenneth.a.dawson@cbni.ucd.ie.
  • Aastrup T; Attana AB, Greta Arwidssons Väg 21, SE-11419 Stockholm, Sweden.
  • Dawson KA; Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Dublin, Ireland. kenneth.a.dawson@cbni.ucd.ie.
Nanoscale ; 10(12): 5474-5481, 2018 Mar 28.
Article en En | MEDLINE | ID: mdl-29511756
ABSTRACT
Nanomedicine, nanotargeting and nanotherapeutics have in the last few years faced several difficulties in translating the promising results obtained in vitro to an in vivo scenario. The origin of this discrepancy might be found in the lack of a detailed and realistic characterization of the biological surface of nanoparticles. Despite the capability to engineer nanomaterials with a great variety and a precise control of the surface functionalization, the targeting capability is lost when the nanoparticles are embedded in complex biological media, due to the formation of a biological layer (biomolecular corona). This biological layer represents the ultimate nanoparticle surface, likely to interact with the cell machinery. Therefore, in addition to traditional nanoparticle characterization techniques, a more insightful investigation of the biomolecular corona is needed, including the capability to assess the orientation and functionality of specific key molecular features. Here we present a method for the rapid screening of exposed protein recognition motifs on the surface of nanoparticles exploiting quartz crystal microbalance (QCM). We quantify accessible functional epitopes of transferrin-coated nanoparticles and correlate them to differences in nanoparticle size and functionalization. The target recognition occurs label free in flow, thereby pushing our investigation into a more in vivo-like scenario. Our method is applicable to a wide array of nanoparticles and therefore holds the potential to become an advanced technique for the classification of all kinds of nanobioconstructs based on their biological external functionality.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Transferrina / Nanopartículas / Corona de Proteínas Tipo de estudio: Diagnostic_studies Límite: Humans Idioma: En Revista: Nanoscale Año: 2018 Tipo del documento: Article País de afiliación: Suecia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Transferrina / Nanopartículas / Corona de Proteínas Tipo de estudio: Diagnostic_studies Límite: Humans Idioma: En Revista: Nanoscale Año: 2018 Tipo del documento: Article País de afiliación: Suecia
...