Your browser doesn't support javascript.
loading
Clusterin deficiency induces lipid accumulation and tissue damage in kidney.
Heo, Jung-Yoon; Kim, Ji-Eun; Dan, Yongwook; Kim, Yong-Woon; Kim, Jong-Yeon; Cho, Kyu Hyang; Bae, Young Kyung; Im, Seung-Soon; Liu, Kwang-Hyeon; Song, In-Hwan; Kim, Jae-Ryong; Lee, In-Kyu; Park, So-Young.
Afiliación
  • Heo JY; Department of PhysiologyCollege of Medicine, Yeungnam University, Daegu, Korea.
  • Kim JE; Smart-Aging Convergence Research CenterCollege of Medicine, Yeungnam University, Daegu, Korea.
  • Dan Y; Department of PhysiologyCollege of Medicine, Yeungnam University, Daegu, Korea.
  • Kim YW; Smart-Aging Convergence Research CenterCollege of Medicine, Yeungnam University, Daegu, Korea.
  • Kim JY; Weinberg CollegeNorthwestern University, Evanston, Illinois, USA.
  • Cho KH; Department of PhysiologyCollege of Medicine, Yeungnam University, Daegu, Korea.
  • Bae YK; Department of PhysiologyCollege of Medicine, Yeungnam University, Daegu, Korea.
  • Im SS; Department of Internal MedicineCollege of Medicine, Yeungnam University, Daegu, Korea.
  • Liu KH; Department of PathologyCollege of Medicine, Yeungnam University, Daegu, Korea.
  • Song IH; Department of PhysiologyKeimyung University School of Medicine, Daegu, Korea.
  • Kim JR; College of Pharmacy and Research Institute of Pharmaceutical SciencesKyungpook National University, Daegu, Korea.
  • Lee IK; Department of AnatomyCollege of Medicine, Yeungnam University, Daegu, Korea.
  • Park SY; Smart-Aging Convergence Research CenterCollege of Medicine, Yeungnam University, Daegu, Korea.
J Endocrinol ; 237(2): 175-191, 2018 05.
Article en En | MEDLINE | ID: mdl-29563234
ABSTRACT
Clusterin is a secretory glycoprotein that is involved in multiple physiopathological processes, including lipid metabolism. Previous studies have shown that clusterin prevents hepatic lipid accumulation via suppression of sterol regulatory element-binding protein (SREBP) 1. In this study, we examined the role of clusterin in renal lipid accumulation in clusterin-knockout mice and NRK52e tubular epithelial cells. Clusterin deficiency increased the expression of SREBP1 and its target genes and decreased malonyl-CoA decarboxylase protein levels in the kidney. Expression of the endocytic receptor, megalin, and scavenger receptor class A was increased in clusterin-deficient mice. Functional analysis of lipid metabolism also revealed that lipid uptake and triglyceride synthesis were increased and fatty acid oxidation was reduced, leading to increased lipid accumulation in clusterin-deficient mice. These phenomena were accompanied by mesangial expansion, fibrosis and increased urinary protein-to-creatinine ratio. High-fat feeding aggravated these clusterin deficiency-induced pathological changes. Clusterin knockdown in NRK52e cells increased lipogenic gene expression and lipid levels, whereas overexpression of clusterin by treatment with adenovirus or recombinant clusterin protein suppressed lipogenic gene expression and lipid levels. Transforming growth factor-beta 1 (TGFB1) expression increased in the kidney of clusterin-deficient mice and suppression of TGFB1 in NRK52e cells suppressed lipid accumulation. These results suggest that clusterin deficiency induces renal lipid accumulation by dysregulating the expression of lipid metabolism-related factors and TGFB1, thereby leading to chronic kidney disease. Hence, clusterin may serve as a therapeutic target for lipid-induced chronic kidney disease.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Clusterina / Metabolismo de los Lípidos / Riñón Límite: Animals Idioma: En Revista: J Endocrinol Año: 2018 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Clusterina / Metabolismo de los Lípidos / Riñón Límite: Animals Idioma: En Revista: J Endocrinol Año: 2018 Tipo del documento: Article
...