Your browser doesn't support javascript.
loading
Second-generation p-values: Improved rigor, reproducibility, & transparency in statistical analyses.
Blume, Jeffrey D; D'Agostino McGowan, Lucy; Dupont, William D; Greevy, Robert A.
Afiliación
  • Blume JD; Associate Professor, Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America.
  • D'Agostino McGowan L; PhD Candidate, Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America.
  • Dupont WD; Professor, Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America.
  • Greevy RA; Associate Professor, Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America.
PLoS One ; 13(3): e0188299, 2018.
Article en En | MEDLINE | ID: mdl-29565985
Verifying that a statistically significant result is scientifically meaningful is not only good scientific practice, it is a natural way to control the Type I error rate. Here we introduce a novel extension of the p-value-a second-generation p-value (pδ)-that formally accounts for scientific relevance and leverages this natural Type I Error control. The approach relies on a pre-specified interval null hypothesis that represents the collection of effect sizes that are scientifically uninteresting or are practically null. The second-generation p-value is the proportion of data-supported hypotheses that are also null hypotheses. As such, second-generation p-values indicate when the data are compatible with null hypotheses (pδ = 1), or with alternative hypotheses (pδ = 0), or when the data are inconclusive (0 < pδ < 1). Moreover, second-generation p-values provide a proper scientific adjustment for multiple comparisons and reduce false discovery rates. This is an advance for environments rich in data, where traditional p-value adjustments are needlessly punitive. Second-generation p-values promote transparency, rigor and reproducibility of scientific results by a priori specifying which candidate hypotheses are practically meaningful and by providing a more reliable statistical summary of when the data are compatible with alternative or null hypotheses.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Reproducibilidad de los Resultados / Interpretación Estadística de Datos Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Female / Humans / Male Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Reproducibilidad de los Resultados / Interpretación Estadística de Datos Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Female / Humans / Male Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos