Your browser doesn't support javascript.
loading
Optimization of bioprocess productivity based on metabolic-genetic network models with bilevel dynamic programming.
Jabarivelisdeh, Banafsheh; Waldherr, Steffen.
Afiliación
  • Jabarivelisdeh B; International Max Planck Research School (IMPRS) for Advanced Methods in Process and System Engineering Magdeburg, Magdeburg, Germany.
  • Waldherr S; Institute for Automation Engineering, Center for Dynamical Systems, Magdeburg, Saxony-Anhalt, Germany.
Biotechnol Bioeng ; 115(7): 1829-1841, 2018 07.
Article en En | MEDLINE | ID: mdl-29578608
One of the main goals of metabolic engineering is to obtain high levels of a microbial product through genetic modifications. To improve the productivity of such a process, the dynamic implementation of metabolic engineering strategies has been proven to be more beneficial compared to static genetic manipulations in which the gene expression is not controlled over time, by resolving the trade-off between growth and production. In this work, a bilevel optimization framework based on constraint-based models is applied to identify an optimal strategy for dynamic genetic and process level manipulations to increase productivity. The dynamic enzyme-cost flux balance analysis (deFBA) as underlying metabolic network model captures the network dynamics and enables the analysis of temporal regulation in the metabolic-genetic network. We apply our computational framework to maximize ethanol productivity in a batch process with Escherichia coli. The results highlight the importance of integrating the genetic level and enzyme production and degradation processes for obtaining optimal dynamic gene and process manipulations.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Biotecnología / Etanol / Escherichia coli / Redes y Vías Metabólicas / Ingeniería Metabólica Idioma: En Revista: Biotechnol Bioeng Año: 2018 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Biotecnología / Etanol / Escherichia coli / Redes y Vías Metabólicas / Ingeniería Metabólica Idioma: En Revista: Biotechnol Bioeng Año: 2018 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos