Your browser doesn't support javascript.
loading
A Novel GMM-Based Behavioral Modeling Approach for Smartwatch-Based Driver Authentication.
Yang, Ching-Han; Chang, Chin-Chun; Liang, Deron.
Afiliación
  • Yang CH; Department of Computer Science and Information Engineering, National Central University, Taoyuan City 32001, Taiwan, drliang@csie.ncu.edu.tw. yang.chinghan@gmail.com.
  • Chang CC; Software Research Center, National Central University, Taoyuan City 32001, Taiwan. yang.chinghan@gmail.com.
  • Liang D; Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung City 20224, Taiwan, cvml@mail.ntou.edu.tw. cvml@mail.ntou.edu.tw.
Sensors (Basel) ; 18(4)2018 Mar 28.
Article en En | MEDLINE | ID: mdl-29597285
All drivers have their own distinct driving habits, and usually hold and operate the steering wheel differently in different driving scenarios. In this study, we proposed a novel Gaussian mixture model (GMM)-based method that can improve the traditional GMM in modeling driving behavior. This new method can be applied to build a better driver authentication system based on the accelerometer and orientation sensor of a smartwatch. To demonstrate the feasibility of the proposed method, we created an experimental system that analyzes driving behavior using the built-in sensors of a smartwatch. The experimental results for driver authentication-an equal error rate (EER) of 4.62% in the simulated environment and an EER of 7.86% in the real-traffic environment-confirm the feasibility of this approach.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sensors (Basel) Año: 2018 Tipo del documento: Article Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sensors (Basel) Año: 2018 Tipo del documento: Article Pais de publicación: Suiza