Your browser doesn't support javascript.
loading
Transport of bacteriophage MS2 and PRD1 in saturated dune sand under suboxic conditions.
Hornstra, Luc M; Schijven, Jack F; Waade, Andrea; Prat, Gemma Serra; Smits, Frank J C; Cirkel, Gijsbert; Stuyfzand, Pieter J; Medema, Gertjan J.
Afiliación
  • Hornstra LM; KWR Watercycle Research Institute, Groningenhaven 7, 3433 PE, Nieuwegein, The Netherlands. Electronic address: Luc.Hornstra@kwrwater.nl.
  • Schijven JF; National Institute for Public Health and the Environment, Bilthoven, The Netherlands; Department of Earth Sciences, University of Utrecht, Utrecht, The Netherlands.
  • Waade A; Department of Earth Sciences, University of Utrecht, Utrecht, The Netherlands.
  • Prat GS; KWR Watercycle Research Institute, Groningenhaven 7, 3433 PE, Nieuwegein, The Netherlands; Waternet, Amsterdam, The Netherlands.
  • Smits FJC; Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands; Waternet, Amsterdam, The Netherlands.
  • Cirkel G; KWR Watercycle Research Institute, Groningenhaven 7, 3433 PE, Nieuwegein, The Netherlands.
  • Stuyfzand PJ; KWR Watercycle Research Institute, Groningenhaven 7, 3433 PE, Nieuwegein, The Netherlands; Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands.
  • Medema GJ; KWR Watercycle Research Institute, Groningenhaven 7, 3433 PE, Nieuwegein, The Netherlands; Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands.
Water Res ; 139: 158-167, 2018 08 01.
Article en En | MEDLINE | ID: mdl-29635152
ABSTRACT
Soil passage of (pretreated) surface water to remove pathogenic microorganisms is a highly efficient process under oxic conditions, reducing microorganism concentrations about 8 log10 within tens of meters. However, under anoxic conditions, it has been shown that removal of microorganisms can be limited very much. Setback distances for adequate protection of natural groundwater may, therefore, be too short if anoxic conditions apply. Because removal of microorganisms under suboxic conditions is unknown, this research investigated removal of bacteriophage MS2 and PRD1 by soil passage under suboxic conditions at field scale. At the field location (dune area), one injection well and six monitoring wells were installed at different depths along three suboxic flow lines, where oxygen concentrations ranged from 0.4 to 1.7 mg/l and nitrate concentrations ranged from 13 to 16 mg/L. PRD1 and MS2 were injected directly at the corresponding depths and their removal in each flow line was determined. The highest bacteriophage removal was observed in the top layer, with about 9 log removal of MS2, and 7 log removal of PRD1 after 16 meters of aquifer transport. Less removal was observed at 12 m below surface, probably due to a higher groundwater velocity in this coarser grained layer. MS2 was removed more effectively than PRD1 under all conditions. Due to short travel times, inactivation of the phages was limited and the reported log removal was mainly associated with attachment of phages to the aquifer matrix. This study shows that attachment of MS2 and PRD1 is similar for oxic and suboxic sandy aquifers, and, therefore, setback distances used for sandy aquifers under oxic and suboxic conditions provide a similar level of safety. Sticking efficiency and the attachment rate coefficient, as measures for virus attachment, were evaluated as a function of the physico-chemical conditions.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oxígeno / Contaminantes del Agua / Agua Subterránea / Levivirus / Bacteriófago PRD1 Idioma: En Revista: Water Res Año: 2018 Tipo del documento: Article Pais de publicación: ENGLAND / ESCOCIA / GB / GREAT BRITAIN / INGLATERRA / REINO UNIDO / SCOTLAND / UK / UNITED KINGDOM

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oxígeno / Contaminantes del Agua / Agua Subterránea / Levivirus / Bacteriófago PRD1 Idioma: En Revista: Water Res Año: 2018 Tipo del documento: Article Pais de publicación: ENGLAND / ESCOCIA / GB / GREAT BRITAIN / INGLATERRA / REINO UNIDO / SCOTLAND / UK / UNITED KINGDOM