Your browser doesn't support javascript.
loading
Enhanced Electrochemical and Thermal Transport Properties of Graphene/MoS2 Heterostructures for Energy Storage: Insights from Multiscale Modeling.
Gong, Feng; Ding, Zhiwei; Fang, Yin; Tong, Chuan-Jia; Xia, Dawei; Lv, Yingying; Wang, Bin; Papavassiliou, Dimitrios V; Liao, Jiaxuan; Wu, Mengqiang.
Afiliación
  • Gong F; School of Materials and Energy , University of Electronic Science and Technology of China , Chengdu 611731 , China.
  • Ding Z; Department of Material Science and Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.
  • Fang Y; James Franck Institute , University of Chicago , Chicago , Illinois 60637 , United States.
  • Tong CJ; Beijing Computational Science Research Center , Beijing 100193 , China.
  • Xia D; School of Materials and Energy , University of Electronic Science and Technology of China , Chengdu 611731 , China.
  • Lv Y; Department of Materials Science and Engineering , University of Wisconsin-Milwaukee , Baltimore , Maryland 21201 , United States.
  • Wang B; School of Chemical, Biological, and Materials Engineering , University of Oklahoma , Norman , Oklahoma 73019 , United States.
  • Papavassiliou DV; School of Chemical, Biological, and Materials Engineering , University of Oklahoma , Norman , Oklahoma 73019 , United States.
  • Liao J; School of Materials and Energy , University of Electronic Science and Technology of China , Chengdu 611731 , China.
  • Wu M; School of Materials and Energy , University of Electronic Science and Technology of China , Chengdu 611731 , China.
ACS Appl Mater Interfaces ; 10(17): 14614-14621, 2018 May 02.
Article en En | MEDLINE | ID: mdl-29638106
Graphene has been combined with molybdenum disulfide (MoS2) to ameliorate the poor cycling stability and rate performance of MoS2 in lithium ion batteries, yet the underlying mechanisms remain less explored. Here, we develop multiscale modeling to investigate the enhanced electrochemical and thermal transport properties of graphene/MoS2 heterostructures (GM-Hs) with a complex morphology. The calculated electronic structures demonstrate the greatly improved electrical conductivity of GM-Hs compared to MoS2. Increasing the graphene layers in GM-Hs not only improves the electrical conductivity but also stabilizes the intercalated Li atoms in GM-Hs. It is also found that GM-Hs with three graphene layers could achieve and maintain a high thermal conductivity of 85.5 W/(m·K) at a large temperature range (100-500 K), nearly 6 times that of pure MoS2 [∼15 W/(m·K)], which may accelerate the heat conduction from electrodes to the ambient. Our quantitative findings may shed light on the enhanced battery performances of various graphene/transition-metal chalcogenide composites in energy storage devices.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2018 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2018 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos