Your browser doesn't support javascript.
loading
Load-Bearing Capacity and Retention of Newly Developed Micro-Locking Implant Prosthetic System: An In Vitro Pilot Study.
Choi, Jae-Won; Choi, Kyung-Hee; Chae, Hee-Jin; Chae, Sung-Ki; Bae, Eun-Bin; Lee, Jin-Ju; Lee, So-Hyoun; Jeong, Chang-Mo; Huh, Jung-Bo.
Afiliación
  • Choi JW; Department of Prosthodontics, Dental Research Institute, Institute of Translational Dental Sciences, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea. won9180@hanmail.net.
  • Choi KH; Research and Development Institute, Cowellmedi Co., Ltd., Busan 46986, Korea. ckh@cowellmedi.com.
  • Chae HJ; Research and Development Institute, Samwon Dental Medical Precise Co., Ltd., Yangsan 50603, Korea. heejin917@naver.com.
  • Chae SK; Research and Development Institute, Samwon Dental Medical Precise Co., Ltd., Yangsan 50603, Korea. csg8606@naver.com.
  • Bae EB; Department of Prosthodontics, Dental Research Institute, Institute of Translational Dental Sciences, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea. 0228dmqls@hanmail.net.
  • Lee JJ; Department of Prosthodontics, Dental Research Institute, Institute of Translational Dental Sciences, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea. ljju1112@hanmail.net.
  • Lee SH; Department of Prosthodontics, Dental Research Institute, Institute of Translational Dental Sciences, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea. romilove7@hanmail.net.
  • Jeong CM; Department of Prosthodontics, Dental Research Institute, Institute of Translational Dental Sciences, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea. cmjeong@pusan.ac.kr.
  • Huh JB; Department of Prosthodontics, Dental Research Institute, Institute of Translational Dental Sciences, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea. neoplasia96@hanmail.net.
Materials (Basel) ; 11(4)2018 Apr 06.
Article en En | MEDLINE | ID: mdl-29642407
The aim of this study was to introduce the newly developed micro-locking implant prosthetic system and to evaluate the resulting its characteristics. To evaluate load-bearing capacity, 25 implants were divided into five groups: external-hexagon connection (EH), internal-octagon connection (IO), internal-hexagon connection (IH), one-body implant (OB), micro-locking implant system (ML). The maximum compressive load was measured using a universal testing machine (UTM) according to the ISO 14801. Retention was evaluated in two experiments: (1) a tensile test of the structure modifications of the components (attachment and implant) and (2) a tensile test after cyclic loading (total 5,000,000 cycles, 100 N, 2 Hz). The load-bearing capacity of the ML group was not significantly different from the other groups (p > 0.05). The number of balls in the attachment and the presence of a hexagonal receptacle did not show a significant correlation with retention (p > 0.05), but the shape of the retentive groove in the implant post had a statistically significant effect on retention (p < 0.05). On the other hand, the retention loss was observed during the initial 1,000,000 cycles, but an overall constant retention was maintained afterward. Various preclinical studies on this novel micro-locking implant prosthetic system should continue so that it can be applied in clinical practice.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Materials (Basel) Año: 2018 Tipo del documento: Article Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Materials (Basel) Año: 2018 Tipo del documento: Article Pais de publicación: Suiza