Your browser doesn't support javascript.
loading
Atomic Insights into Phase Evolution in Ternary Transition-Metal Dichalcogenides Nanostructures.
Zou, Yi-Chao; Chen, Zhi-Gang; Liu, Shijian; Aso, Kohei; Zhang, Chenxi; Kong, Fantai; Hong, Min; Matsumura, Syo; Cho, Kyeongjae; Zou, Jin.
Afiliación
  • Zou YC; Materials Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia.
  • Chen ZG; Materials Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia.
  • Liu S; Center of Future Materials, University of Southern Queensland, Springfield, QLD, 4300, Australia.
  • Aso K; Materials Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia.
  • Zhang C; Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan.
  • Kong F; Department of Materials Science & Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA.
  • Hong M; Department of Materials Science & Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA.
  • Matsumura S; Materials Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia.
  • Cho K; Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan.
  • Zou J; Department of Materials Science & Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA.
Small ; 14(22): e1800780, 2018 May.
Article en En | MEDLINE | ID: mdl-29717813
Phase engineering through chemical modification can significantly alter the properties of transition-metal dichalcogenides, and allow the design of many novel electronic, photonic, and optoelectronics devices. The atomic-scale mechanism underlying such phase engineering is still intensively investigated but elusive. Here, advanced electron microscopy, combined with density functional theory calculations, is used to understand the phase evolution (hexagonal 2H→monoclinic T'→orthorhombic Td ) in chemical vapor deposition grown Mo1-x W x Te2 nanostructures. Atomic-resolution imaging and electron diffraction indicate that Mo1-x W x Te2 nanostructures have two phases: the pure monoclinic phase in low W-concentrated (0 < x ≤ 10 at.%) samples, and the dual phase of the monoclinic and orthorhombic in high W-concentrated (10 < x < 90 at.%) samples. Such phase coexistence exists with coherent interfaces, mediated by a newly uncovered orthorhombic phase Td '. Td ', preserves the centrosymmetry of T' and provides the possible phase transition path for T'→Td with low energy state. This work enriches the atomic-scale understanding of phase evolution and coexistence in multinary compounds, and paves the way for device applications of new transition-metal dichalcogenides phases and heterostructures.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2018 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2018 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Alemania