Your browser doesn't support javascript.
loading
Long-term and high-concentration heavy-metal contamination strongly influences the microbiome and functional genes in Yellow River sediments.
Chen, Yong; Jiang, Yiming; Huang, Haiying; Mou, Lichao; Ru, Jinlong; Zhao, Jianhua; Xiao, Shan.
Afiliación
  • Chen Y; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China.
  • Jiang Y; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China; Institute of Virology (VIRO), Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Land
  • Huang H; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu 730000, PR China; Institute of Virology (VIRO), Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Land
  • Mou L; Signal Processing in Earth Observation (SiPEO), Technische Universität München, 80333 Munich, Germany; Remote Sensing Technology Institute (IMF), German Aerospace Center (DLR), 82234 Wessling, Germany.
  • Ru J; Department of Bioinformatics, Technische Universität München, Wissenschaftzentrum Weihenstephan, Maximus-von-Imhof-Forum 3, D-85354 Freising, Germany.
  • Zhao J; Shanghai Majorbio Bio-pharm Technology Co., Ltd., Building 3, Lane 3399, Kangxin Road, International Medical Zone, Pudong New Area, Shanghai, PR China.
  • Xiao S; Shanghai Majorbio Bio-pharm Technology Co., Ltd., Building 3, Lane 3399, Kangxin Road, International Medical Zone, Pudong New Area, Shanghai, PR China.
Sci Total Environ ; 637-638: 1400-1412, 2018 Oct 01.
Article en En | MEDLINE | ID: mdl-29801233
The world is facing a hard battle against soil pollution such as heavy metals. Metagenome sequencing, 16S rRNA sequencing, and quantitative polymerase chain reaction (qPCR) were used to examine microbial adaptation mechanism to contaminated sediments under natural conditions. Results showed that sediment from a tributary of the Yellow River, which was named Dongdagou River (DDG) supported less bacterial biomass and owned lower richness than sediment from Maqu (MQ), an uncontaminated site in the upper reaches of the Yellow River. Additionally, microbiome structures in these two sites were different. Metagenome sequencing and functional gene annotations revealed that sediment from DDG contains a larger number of genes related to DNA recombination, DNA damage repair, and heavy-metal resistance. KEGG pathway analysis indicated that the sediment of DDG contains a greater number of enzymes associated with heavy-metal resistance and reduction. Additionally, the bacterial phyla Proteobacteria, Bacteroidetes, and Firmicutes, which harbored a larger suite of metal-resistance genes, were found to be the core functional phyla in the contaminated sediments. Furthermore, sediment in DDG owned higher viral abundance, indicating virus-mediated heavy-metal resistance gene transfer might be an adaptation mechanism. In conclusion, microbiome of sediment from DDG has evolved into an integrated system resistant to long-term heavy-metal pollution.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Contaminantes Químicos del Agua / Monitoreo del Ambiente / Metales Pesados Idioma: En Revista: Sci Total Environ Año: 2018 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Contaminantes Químicos del Agua / Monitoreo del Ambiente / Metales Pesados Idioma: En Revista: Sci Total Environ Año: 2018 Tipo del documento: Article Pais de publicación: Países Bajos