Your browser doesn't support javascript.
loading
A bioinspired flexible organic artificial afferent nerve.
Kim, Yeongin; Chortos, Alex; Xu, Wentao; Liu, Yuxin; Oh, Jin Young; Son, Donghee; Kang, Jiheong; Foudeh, Amir M; Zhu, Chenxin; Lee, Yeongjun; Niu, Simiao; Liu, Jia; Pfattner, Raphael; Bao, Zhenan; Lee, Tae-Woo.
Afiliación
  • Kim Y; Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
  • Chortos A; Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
  • Xu W; Department of Materials Science and Engineering, Seoul National University, Seoul, South Korea. wentao@nankai.edu.cn zbao@stanford.edu twlees@snu.ac.kr.
  • Liu Y; Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin, China.
  • Oh JY; Department of Bioengineering, Stanford University, Stanford, CA, USA.
  • Son D; Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
  • Kang J; Department of Chemical Engineering, Kyung Hee University, Yongin, South Korea.
  • Foudeh AM; Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
  • Zhu C; Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
  • Lee Y; Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
  • Niu S; Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
  • Liu J; Department of Materials Science and Engineering, Seoul National University, Seoul, South Korea.
  • Pfattner R; Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
  • Bao Z; Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
  • Lee TW; Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
Science ; 360(6392): 998-1003, 2018 06 01.
Article en En | MEDLINE | ID: mdl-29853682
The distributed network of receptors, neurons, and synapses in the somatosensory system efficiently processes complex tactile information. We used flexible organic electronics to mimic the functions of a sensory nerve. Our artificial afferent nerve collects pressure information (1 to 80 kilopascals) from clusters of pressure sensors, converts the pressure information into action potentials (0 to 100 hertz) by using ring oscillators, and integrates the action potentials from multiple ring oscillators with a synaptic transistor. Biomimetic hierarchical structures can detect movement of an object, combine simultaneous pressure inputs, and distinguish braille characters. Furthermore, we connected our artificial afferent nerve to motor nerves to construct a hybrid bioelectronic reflex arc to actuate muscles. Our system has potential applications in neurorobotics and neuroprosthetics.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Vías Aferentes / Materiales Biomiméticos / Prótesis Neurales Idioma: En Revista: Science Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Vías Aferentes / Materiales Biomiméticos / Prótesis Neurales Idioma: En Revista: Science Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos