Your browser doesn't support javascript.
loading
Proliferative Glioblastoma Cancer Cells Exhibit Persisting Temporal Control of Metabolism and Display Differential Temporal Drug Susceptibility in Chemotherapy.
Wagner, Paula M; Sosa Alderete, Lucas G; Gorné, Lucas D; Gaveglio, Virginia; Salvador, Gabriela; Pasquaré, Susana; Guido, Mario E.
Afiliación
  • Wagner PM; CIQUIBIC-CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Ciudad Universitaria, 5000, Córdoba, Argentina.
  • Sosa Alderete LG; Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina.
  • Gorné LD; CIQUIBIC-CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Ciudad Universitaria, 5000, Córdoba, Argentina.
  • Gaveglio V; Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina.
  • Salvador G; Department of Molecular Biology, UNRC, CONICET, Río Cuarto, Argentina.
  • Pasquaré S; Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.
  • Guido ME; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Instituto Multidisciplinario de Biología Vegetal (IMBiV), Córdoba, Argentina.
Mol Neurobiol ; 56(2): 1276-1292, 2019 Feb.
Article en En | MEDLINE | ID: mdl-29881948
ABSTRACT
Even in immortalized cell lines, circadian clocks regulate physiological processes in a time-dependent manner, driving transcriptional and metabolic rhythms, the latter being able to persist without transcription. Circadian rhythm disruptions in modern life (shiftwork, jetlag, etc.) may lead to higher cancer risk. Here, we investigated whether the human glioblastoma T98G cells maintained quiescent or under proliferation keep a functional clock and whether cells display differential time responses to bortezomib chemotherapy. In arrested cultures, mRNAs for clock (Per1, Rev-erbα) and glycerophospholipid (GPL)-synthesizing enzyme genes, 32P-GPL labeling, and enzyme activities exhibited circadian rhythmicity; oscillations were also found in the redox state/peroxiredoxin oxidation. In proliferating cells, rhythms of gene expression were lost or their periodicity shortened whereas the redox and GPL metabolisms continued to fluctuate with a similar periodicity as under arrest. Cell viability significantly changed over time after bortezomib treatment; however, this rhythmicity and the redox cycles were altered after Bmal1 knock-down, indicating cross-talk between the transcriptional and the metabolic oscillators. An intrinsic metabolic clock continues to function in proliferating cells, controlling diverse metabolisms and highlighting differential states of tumor suitability for more efficient, time-dependent chemotherapy when the redox state is high and GPL metabolism low.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Glioblastoma / Proliferación Celular / Relojes Circadianos / Bortezomib / Neuronas / Antineoplásicos Límite: Humans Idioma: En Revista: Mol Neurobiol Asunto de la revista: BIOLOGIA MOLECULAR / NEUROLOGIA Año: 2019 Tipo del documento: Article País de afiliación: Argentina

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Glioblastoma / Proliferación Celular / Relojes Circadianos / Bortezomib / Neuronas / Antineoplásicos Límite: Humans Idioma: En Revista: Mol Neurobiol Asunto de la revista: BIOLOGIA MOLECULAR / NEUROLOGIA Año: 2019 Tipo del documento: Article País de afiliación: Argentina