Your browser doesn't support javascript.
loading
Dynamic Model Updating for Bridge Structures Using the Kriging Model and PSO Algorithm Ensemble with Higher Vibration Modes.
Qin, Shiqiang; Zhang, Yazhou; Zhou, Yun-Lai; Kang, Juntao.
Afiliación
  • Qin S; School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China. shiqiangqin@whut.edu.cn.
  • Zhang Y; School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China. yazhouzhang@whut.edu.cn.
  • Zhou YL; Department of Civil and Environmental Engineering, National University of Singapore, 2 Engineering Drive 2, Singapore 117576, Singapore. ceezyl@nus.edu.sg.
  • Kang J; School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China. jtkang@whut.edu.cn.
Sensors (Basel) ; 18(6)2018 Jun 08.
Article en En | MEDLINE | ID: mdl-29890645
This study applied the kriging model and particle swarm optimization (PSO) algorithm for the dynamic model updating of bridge structures using the higher vibration modes under large-amplitude initial conditions. After addressing the higher mode identification theory using time-domain operational modal analysis, the kriging model is then established based on Latin hypercube sampling and regression analysis. The kriging model performs as a surrogate model for a complex finite element model in order to predict analytical responses. An objective function is established to express the relative difference between analytically predicted responses and experimentally measured ones, and the initial finite element (FE) model is hereinafter updated using the PSO algorithm. The Jalón viaduct—a concrete continuous railway bridge—is applied to verify the proposed approach. The results show that the kriging model can accurately predict the responses and reduce computational time as well.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Sensors (Basel) Año: 2018 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Sensors (Basel) Año: 2018 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza