Your browser doesn't support javascript.
loading
Regulating Surface Facets of Metallic Aerogel Electrocatalysts by Size-Dependent Localized Ostwald Ripening.
Duan, Wenchao; Zhang, Peina; Xiahou, Yujiao; Song, Yahui; Bi, Cuixia; Zhan, Jie; Du, Wei; Huang, Lihui; Möhwald, Helmuth; Xia, Haibing.
Afiliación
  • Du W; School of Environment and Material Engineering , Yantai University , Yantai 264005 Shandong , China.
  • Möhwald H; Max Planck Institute of Colloids and Interfaces , Potsdam-Golm Science Park , 14476 Potsdam , Germany.
ACS Appl Mater Interfaces ; 10(27): 23081-23093, 2018 Jul 11.
Article en En | MEDLINE | ID: mdl-29926731
It is well known that the activity and stability of electrocatalysts are largely dependent on their surface facets. In this work, we have successfully regulated surface facets of three-dimensional (3D) metallic Au m- n aerogels by salt-induced assembly of citrate-stabilized gold nanoparticles (Au NPs) of two different sizes and further size-dependent localized Ostwald ripening at controlled particle number ratios, where m and n represent the size of Au NPs. In addition, 3D Au m- n-Pd aerogels were further synthesized on the basis of Au m- n aerogels and also bear controlled surface facets because of the formation of ultrathin Pd layers on Au m- n aerogels. Taking the electrooxidation of small organic molecules (such as methanol and ethanol) by the resulting Au m- n and Au m- n-Pd aerogels as examples, it is found that surface facets of metallic aerogels with excellent performance can be regulated to realize preferential surface facets for methanol oxidation and ethanol oxidation, respectively. Moreover, they also indeed simultaneously bear high activity and excellent stability. Furthermore, their activities and stability are also highly dependent on the area ratio of active facets and inactive facets on their surfaces, respectively, and these ratios are varied via the mismatch of sizes of adjacent NPs. Thus, this work not only demonstrates the realization of the regulation of the surface facets of metallic aerogels by size-dependent localized Ostwald ripening but also will open up a new way to improve electrocatalytic performance of 3D metallic aerogels by surface regulation.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2018 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2018 Tipo del documento: Article Pais de publicación: Estados Unidos