Your browser doesn't support javascript.
loading
The climate, the fuel and the land use: Long-term regional variability of biomass burning in boreal forests.
Molinari, Chiara; Lehsten, Veiko; Blarquez, Olivier; Carcaillet, Christopher; Davis, Basil A S; Kaplan, Jed O; Clear, Jennifer; Bradshaw, Richard H W.
Afiliación
  • Molinari C; Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden.
  • Lehsten V; Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden.
  • Blarquez O; Department of Macroecology and Landscape Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland.
  • Carcaillet C; Département de Géographie, Université de Montréal, Montréal, Québec, Canada.
  • Davis BAS; École Pratique des Hautes Études (EPHE), PSL Research University, Paris, France.
  • Kaplan JO; Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023, Université Claude Bernard Lyon 1, CNRS, ENTPE, Villeurbanne, France.
  • Clear J; Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland.
  • Bradshaw RHW; ARVE Research SARL, Pully, Switzerland.
Glob Chang Biol ; 24(10): 4929-4945, 2018 10.
Article en En | MEDLINE | ID: mdl-29959810
ABSTRACT
The influence of different drivers on changes in North American and European boreal forests biomass burning (BB) during the Holocene was investigated based on the following hypotheses land use was important only in the southernmost regions, while elsewhere climate was the main driver modulated by changes in fuel type. BB was reconstructed by means of 88 sedimentary charcoal records divided into six different site clusters. A statistical approach was used to explore the relative contribution of (a) pollen-based mean July/summer temperature and mean annual precipitation reconstructions, (b) an independent model-based scenario of past land use (LU), and (c) pollen-based reconstructions of plant functional types (PFTs) on BB. Our hypotheses were tested with (a) a west-east northern boreal sector with changing climatic conditions and a homogeneous vegetation, and (b) a north-south European boreal sector characterized by gradual variation in both climate and vegetation composition. The processes driving BB in boreal forests varied from one region to another during the Holocene. However, general trends in boreal biomass burning were primarily controlled by changes in climate (mean annual precipitation in Alaska, northern Quebec, and northern Fennoscandia, and mean July/summer temperature in central Canada and central Fennoscandia) and, secondarily, by fuel composition (BB positively correlated with the presence of boreal needleleaf evergreen trees in Alaska and in central and southern Fennoscandia). Land use played only a marginal role. A modification towards less flammable tree species (by promoting deciduous stands over fire-prone conifers) could contribute to reduce circumboreal wildfire risk in future warmer periods.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Árboles / Clima / Biomasa / Taiga Límite: Humans Idioma: En Revista: Glob Chang Biol Año: 2018 Tipo del documento: Article País de afiliación: Suecia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Árboles / Clima / Biomasa / Taiga Límite: Humans Idioma: En Revista: Glob Chang Biol Año: 2018 Tipo del documento: Article País de afiliación: Suecia