Your browser doesn't support javascript.
loading
Know your full potential: Quantitative Kelvin probe force microscopy on nanoscale electrical devices.
Axt, Amelie; Hermes, Ilka M; Bergmann, Victor W; Tausendpfund, Niklas; Weber, Stefan A L.
Afiliación
  • Axt A; Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
  • Hermes IM; Institute of Physics, Johannes Gutenberg University Mainz, 55099 Mainz, Germany.
  • Bergmann VW; Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
  • Tausendpfund N; Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
  • Weber SAL; Institute of Physics, Johannes Gutenberg University Mainz, 55099 Mainz, Germany.
Beilstein J Nanotechnol ; 9: 1809-1819, 2018.
Article en En | MEDLINE | ID: mdl-29977714
ABSTRACT
In this study we investigate the influence of the operation method in Kelvin probe force microscopy (KPFM) on the measured potential distribution. KPFM is widely used to map the nanoscale potential distribution in operating devices, e.g., in thin film transistors or on cross sections of functional solar cells. Quantitative surface potential measurements are crucial for understanding the operation principles of functional nanostructures in these electronic devices. Nevertheless, KPFM is prone to certain imaging artifacts, such as crosstalk from topography or stray electric fields. Here, we compare different amplitude modulation (AM) and frequency modulation (FM) KPFM methods on a reference structure consisting of an interdigitated electrode array. This structure mimics the sample geometry in device measurements, e.g., on thin film transistors or on solar cell cross sections. In particular, we investigate how quantitative different KPFM methods can measure a predefined externally applied voltage difference between the electrodes. We found that generally, FM-KPFM methods provide more quantitative results that are less affected by the presence of stray electric fields compared to AM-KPFM methods.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Beilstein J Nanotechnol Año: 2018 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Beilstein J Nanotechnol Año: 2018 Tipo del documento: Article País de afiliación: Alemania