Your browser doesn't support javascript.
loading
The evolutionary dynamics of metabolic protocells.
Pechuan, Ximo; Puzio, Raymond; Bergman, Aviv.
Afiliación
  • Pechuan X; Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America.
  • Puzio R; Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America.
  • Bergman A; Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America.
PLoS Comput Biol ; 14(7): e1006265, 2018 07.
Article en En | MEDLINE | ID: mdl-30028838
Protocell multilevel selection models have been proposed to study the evolutionary dynamics of vesicles encapsulating a set of replicating, competing and mutating sequences. The frequency of the different sequence types determines protocell survival through a fitness function. One of the defining features of these models is the genetic load generated when the protocell divides and its sequences are assorted between the offspring vesicles. However, these stochastic assortment effects disappear when the redundancy of each sequence type is sufficiently high. The fitness dependence of the vesicle with its sequence content is usually defined without considering a realistic account on how the lower level dynamics would specify the protocell fitness. Here, we present a protocell model with a fitness function determined by the output flux of a simple metabolic network with the aim of understanding how the evolution of both kinetic and topological features of metabolism would have been constrained by the particularities of the protocell evolutionary dynamics. In our model, the sequences inside the vesicle are both the carriers of information and Michaelis-Menten catalysts exhibiting saturation. We found that the saturation of the catalysts controlling the metabolic fluxes, achievable by modifying the kinetic or stoichiometric parameters, provides a mechanism to ameliorate the assortment load by increasing the redundancy of the catalytic sequences required to achieve the maximum flux. Regarding the network architecture, we conclude that combinations of parallel network motifs and bimolecular catalysts are a robust way to increase the complexity of the metabolism enclosed by the protocell.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fenómenos Bioquímicos / Evolución Molecular / Redes y Vías Metabólicas / Células Artificiales Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Fenómenos Bioquímicos / Evolución Molecular / Redes y Vías Metabólicas / Células Artificiales Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos