Your browser doesn't support javascript.
loading
Rapid diffusion-state switching underlies stable cytoplasmic gradients in the Caenorhabditis elegans zygote.
Wu, Youjun; Han, Bingjie; Li, Younan; Munro, Edwin; Odde, David J; Griffin, Erik E.
Afiliación
  • Wu Y; Department of Biological Sciences, Dartmouth College, Hanover, NH 03755.
  • Han B; Department of Biological Sciences, Dartmouth College, Hanover, NH 03755.
  • Li Y; Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637.
  • Munro E; Department of Molecular Genetics and Cell Biology, Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637.
  • Odde DJ; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455.
  • Griffin EE; Department of Biological Sciences, Dartmouth College, Hanover, NH 03755; erik.e.griffin@dartmouth.edu.
Proc Natl Acad Sci U S A ; 115(36): E8440-E8449, 2018 09 04.
Article en En | MEDLINE | ID: mdl-30042214
Protein concentration gradients organize cells and tissues and commonly form through diffusion away from a local source of protein. Interestingly, during the asymmetric division of the Caenorhabditis elegans zygote, the RNA-binding proteins MEX-5 and PIE-1 form opposing concentration gradients in the absence of a local source. In this study, we use near-total internal reflection fluorescence (TIRF) imaging and single-particle tracking to characterize the reaction/diffusion dynamics that maintain the MEX-5 and PIE-1 gradients. Our findings suggest that both proteins interconvert between fast-diffusing and slow-diffusing states on timescales that are much shorter (seconds) than the timescale of gradient formation (minutes). The kinetics of diffusion-state switching are strongly polarized along the anterior/posterior (A/P) axis by the PAR polarity system such that fast-diffusing MEX-5 and PIE-1 particles are approximately symmetrically distributed, whereas slow-diffusing particles are highly enriched in the anterior and posterior cytoplasm, respectively. Using mathematical modeling, we show that local differences in the kinetics of diffusion-state switching can rapidly generate stable concentration gradients over a broad range of spatial and temporal scales.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Cigoto / Proteínas Nucleares / Polaridad Celular / Caenorhabditis elegans / Citoplasma / Proteínas de Caenorhabditis elegans / Modelos Biológicos Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2018 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Cigoto / Proteínas Nucleares / Polaridad Celular / Caenorhabditis elegans / Citoplasma / Proteínas de Caenorhabditis elegans / Modelos Biológicos Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2018 Tipo del documento: Article Pais de publicación: Estados Unidos