Your browser doesn't support javascript.
loading
The Involvement of the Mitochondrial Amidoxime Reducing Component (mARC) in the Reductive Metabolism of Hydroxamic Acids.
Ginsel, Carsten; Plitzko, Birte; Froriep, Danilo; Stolfa, Diana A; Jung, Manfred; Kubitza, Christian; Scheidig, Axel J; Havemeyer, Antje; Clement, Bernd.
Afiliación
  • Ginsel C; Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry (C.G., B.P., D.F., A.H., B.C.) and Zoological Institute, Structural biology (C.K., A.J.S.), Christian-Albrechts-Universität zu Kiel, Kiel, Germany; and Institute of Pharmaceutical Sciences, Albert-Ludwig-Universität Freib
  • Plitzko B; Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry (C.G., B.P., D.F., A.H., B.C.) and Zoological Institute, Structural biology (C.K., A.J.S.), Christian-Albrechts-Universität zu Kiel, Kiel, Germany; and Institute of Pharmaceutical Sciences, Albert-Ludwig-Universität Freib
  • Froriep D; Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry (C.G., B.P., D.F., A.H., B.C.) and Zoological Institute, Structural biology (C.K., A.J.S.), Christian-Albrechts-Universität zu Kiel, Kiel, Germany; and Institute of Pharmaceutical Sciences, Albert-Ludwig-Universität Freib
  • Stolfa DA; Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry (C.G., B.P., D.F., A.H., B.C.) and Zoological Institute, Structural biology (C.K., A.J.S.), Christian-Albrechts-Universität zu Kiel, Kiel, Germany; and Institute of Pharmaceutical Sciences, Albert-Ludwig-Universität Freib
  • Jung M; Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry (C.G., B.P., D.F., A.H., B.C.) and Zoological Institute, Structural biology (C.K., A.J.S.), Christian-Albrechts-Universität zu Kiel, Kiel, Germany; and Institute of Pharmaceutical Sciences, Albert-Ludwig-Universität Freib
  • Kubitza C; Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry (C.G., B.P., D.F., A.H., B.C.) and Zoological Institute, Structural biology (C.K., A.J.S.), Christian-Albrechts-Universität zu Kiel, Kiel, Germany; and Institute of Pharmaceutical Sciences, Albert-Ludwig-Universität Freib
  • Scheidig AJ; Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry (C.G., B.P., D.F., A.H., B.C.) and Zoological Institute, Structural biology (C.K., A.J.S.), Christian-Albrechts-Universität zu Kiel, Kiel, Germany; and Institute of Pharmaceutical Sciences, Albert-Ludwig-Universität Freib
  • Havemeyer A; Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry (C.G., B.P., D.F., A.H., B.C.) and Zoological Institute, Structural biology (C.K., A.J.S.), Christian-Albrechts-Universität zu Kiel, Kiel, Germany; and Institute of Pharmaceutical Sciences, Albert-Ludwig-Universität Freib
  • Clement B; Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry (C.G., B.P., D.F., A.H., B.C.) and Zoological Institute, Structural biology (C.K., A.J.S.), Christian-Albrechts-Universität zu Kiel, Kiel, Germany; and Institute of Pharmaceutical Sciences, Albert-Ludwig-Universität Freib
Drug Metab Dispos ; 46(10): 1396-1402, 2018 10.
Article en En | MEDLINE | ID: mdl-30045842
ABSTRACT
The mitochondrial amidoxime reducing component is a recently discovered molybdenum enzyme in mammals which, in concert with the electron transport proteins cytochrome b5 and NADH cytochrome b5 reductase, catalyzes the reduction of N-oxygenated structures. This three component enzyme system plays a major role in N-reductive drug metabolism. Belonging to the group of N-hydroxylated structures, hydroxamic acids are also potential substrates of the mARC-system. Hydroxamic acids show a variety of pharmacological activities and are therefore often found in drug candidates. They can also exhibit toxic properties as is the case for many aryl hydroxamic acids formed during the metabolism of arylamides. Biotransformation assays using recombinant human proteins, subcellular porcine tissue fractions as well as human cell culture were performed. Here the mARC-dependent reduction of the model compound benzhydroxamic acid is reported in addition to the reduction of three drugs. In comparison with other known substrates of the molybdenum depending enzyme system (e.g., amidoxime prodrugs) the conversion rates measured here are slower, thereby reflecting the mediocre metabolic stability and oral bioavailability of distinct hydroxamic acids. Moreover, the toxic N-hydroxylated metabolite of the analgesic phenacetin, N-hydroxyphenacetin, is not reduced by the mARC-system under the chosen conditions. This confirms the high toxicity of this component, as it needs to be detoxified by other pathways. This work highlights the need to monitor the N-reductive metabolism of new drug candidates by the mARC-system when evaluating the metabolic stability of hydroxamic acid-containing structures or the potential risks of toxic metabolites.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oxidorreductasas / Proteínas Mitocondriales / Ácidos Hidroxámicos Límite: Animals / Humans Idioma: En Revista: Drug Metab Dispos Asunto de la revista: FARMACOLOGIA Año: 2018 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oxidorreductasas / Proteínas Mitocondriales / Ácidos Hidroxámicos Límite: Animals / Humans Idioma: En Revista: Drug Metab Dispos Asunto de la revista: FARMACOLOGIA Año: 2018 Tipo del documento: Article