Your browser doesn't support javascript.
loading
Four-Carbon Criegee Intermediate from Isoprene Ozonolysis: Methyl Vinyl Ketone Oxide Synthesis, Infrared Spectrum, and OH Production.
Barber, Victoria P; Pandit, Shubhrangshu; Green, Amy M; Trongsiriwat, Nisalak; Walsh, Patrick J; Klippenstein, Stephen J; Lester, Marsha I.
Afiliación
  • Barber VP; Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States.
  • Pandit S; Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States.
  • Green AM; Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States.
  • Trongsiriwat N; Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States.
  • Walsh PJ; Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States.
  • Klippenstein SJ; Chemical Sciences and Engineering Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States.
  • Lester MI; Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6323 , United States.
J Am Chem Soc ; 140(34): 10866-10880, 2018 08 29.
Article en En | MEDLINE | ID: mdl-30074392
ABSTRACT
The reaction of ozone with isoprene, one of the most abundant volatile organic compounds in the atmosphere, produces three distinct carbonyl oxide species (RR'COO) known as Criegee intermediates formaldehyde oxide (CH2OO), methyl vinyl ketone oxide (MVK-OO), and methacrolein oxide (MACR-OO). The nature of the substituents (R,R' = H, CH3, CH═CH2) and conformations of the Criegee intermediates control their subsequent chemistry in the atmosphere. In particular, unimolecular decay of MVK-OO is predicted to be the major source of hydroxyl radicals (OH) in isoprene ozonolysis. This study reports the initial laboratory synthesis and direct detection of MVK-OO through reaction of a photolytically generated, resonance-stabilized monoiodoalkene radical with O2. MVK-OO is characterized utilizing infrared (IR) action spectroscopy, in which IR activation of MVK-OO with two quanta of CH stretch at ca. 6000 cm-1 is coupled with ultraviolet detection of the resultant OH products. MVK-OO is identified by comparison of the experimentally observed IR spectral features with theoretically predicted IR absorption spectra. For syn-MVK-OO, the rate of appearance of OH products agrees with the unimolecular decay rate predicted using statistical theory with tunneling. This validates the hydrogen atom transfer mechanism and computed transition-state barrier (18.0 kcal mol-1) leading to OH products. Theoretical calculations reveal an additional roaming pathway between the separating radical fragments, which results in other products. Master equation modeling yields a thermal unimolecular decay rate for syn-MVK-OO of 33 s-1 (298 K, 1 atm). For anti-MVK-OO, theoretical exploration of several unimolecular decay pathways predicts that isomerization to dioxole is the most likely initial step to products.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Am Chem Soc Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Am Chem Soc Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos