Structure-guided design of a potent peptide inhibitor targeting the interaction between CRK and ABL kinase.
Medchemcomm
; 9(3): 519-524, 2018 Mar 01.
Article
en En
| MEDLINE
| ID: mdl-30108942
CT-10 regulator of kinase (CRK) proteins play important roles in human cancer metastasis and invasion. Moreover, CRK proteins are the major phosphorylation substrates of ABL kinase and its oncogenic mutant BCR-ABL kinase. The interaction between CRK and BCR-ABL plays important roles in chronic myeloid leukemia. Hence, inhibiting the interaction of CRK with BCR-ABL is an attractive way to attenuate cancer metastasis. Herein, we report the development of a peptide inhibitor, PRM-3, targeting the interaction between CRK-II and ABL kinase. PRM-3 binds to the N-terminal SH3 (nSH3) domain in CRK-II with a 10 nM affinity and prevents the interaction between CRK-II and ABL kinase. An in vitro biochemical assay demonstrated that PRM-3 inhibits the ABL-dependent phosphorylation of CRK-II more effectively than imatinib. Remarkably, PRM-3 also inhibited the CRK phosphorylation by T315I-ABL kinase, which is resistant to all first- and second-generation tyrosine kinase inhibitors. Our study provides a promising alternative approach to overcome the drug resistance of ABL kinase.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Medchemcomm
Año:
2018
Tipo del documento:
Article
Pais de publicación:
Reino Unido