Your browser doesn't support javascript.
loading
Disruption of Chromosomal Architecture of cox2 Locus Sensitizes Lung Cancer Cells to Radiotherapy.
Sun, Yuxiang; Dai, Hui; Chen, Shaopeng; Zhang, Yajun; Wu, Tao; Cao, Xianbin; Zhao, Guoping; Xu, An; Wang, Jun; Wu, Lijun.
Afiliación
  • Sun Y; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China.
  • Dai H; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Environmental Toxicology and Pollution Cont
  • Chen S; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China. Electronic ad
  • Zhang Y; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Environmental Toxicology and Pollution Cont
  • Wu T; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Environmental Toxicology and Pollution Cont
  • Cao X; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Environmental Toxicology and Pollution Cont
  • Zhao G; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China.
  • Xu A; Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Environmental
  • Wang J; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China.
  • Wu L; Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Key Laboratory of Environmental
Mol Ther ; 26(10): 2456-2465, 2018 10 03.
Article en En | MEDLINE | ID: mdl-30131302
ABSTRACT
Despite treatment of lung cancer with radiotherapy and chemotherapy, the survival rate of lung cancer patients remains poor. Previous studies demonstrated the importance of upregulation of inflammatory factors, such as cyclooxygenase 2 (cox2), in tumor tolerance. In the present study, we investigated the role of cox2 in radiosensitivity of lung cancer. Our results showed that the combination treatment of radiation with aspirin, an anti-inflammatory drug, induced a synergistic reduction of cell survival in A549 and H1299 lung cancer cells. In comparison with normal human lung fibroblasts (NHLFs), the cell viability was significantly decreased and the level of apoptosis was remarkably enhanced in A549 cells. Mechanistic studies revealed that the reduction of cox2 by aspirin in A549 and H1299 was caused by disruption of the chromosomal architecture of the cox2 locus. Moreover, the disruption of chromatin looping was mediated by the inhibition of nuclear translocation of p65 and decreased enrichment of p65 at cox2-regulatory elements. Importantly, disorganization of the chromosomal architecture of cox2 triggered A549 cells sensitive to γ-radiation by the induction of apoptosis. In conclusion, we present evidence of an effective therapeutic treatment targeting the epigenetic regulation of lung cancer and a potential strategy to overcome radiation resistance in cancer cells.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tolerancia a Radiación / Terapia Genética / Ciclooxigenasa 2 / Neoplasias Pulmonares Límite: Humans Idioma: En Revista: Mol Ther Asunto de la revista: BIOLOGIA MOLECULAR / TERAPEUTICA Año: 2018 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tolerancia a Radiación / Terapia Genética / Ciclooxigenasa 2 / Neoplasias Pulmonares Límite: Humans Idioma: En Revista: Mol Ther Asunto de la revista: BIOLOGIA MOLECULAR / TERAPEUTICA Año: 2018 Tipo del documento: Article País de afiliación: China