Your browser doesn't support javascript.
loading
Protein-Corona-by-Design in 2D: A Reliable Platform to Decode Bio-Nano Interactions for the Next-Generation Quality-by-Design Nanomedicines.
Mei, Kuo-Ching; Ghazaryan, Artur; Teoh, Er Zhen; Summers, Huw D; Li, Yueting; Ballesteros, Belén; Piasecka, Justyna; Walters, Adam; Hider, Robert C; Mailänder, Volker; Al-Jamal, Khuloud T.
Afiliación
  • Mei KC; Institute of Pharmaceutical Science, Faculty of Life Science & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
  • Ghazaryan A; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
  • Teoh EZ; Institute of Pharmaceutical Science, Faculty of Life Science & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
  • Summers HD; Centre for Nanohealth, Swansea University, Singleton Park, Swansea, SA2 8PP, UK.
  • Li Y; Institute of Pharmaceutical Science, Faculty of Life Science & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
  • Ballesteros B; Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, No. 9, Beijing Road, Yunyan District, Guiyang, 550004, China.
  • Piasecka J; Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain.
  • Walters A; Centre for Nanohealth, Swansea University, Singleton Park, Swansea, SA2 8PP, UK.
  • Hider RC; Institute of Pharmaceutical Science, Faculty of Life Science & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
  • Mailänder V; Institute of Pharmaceutical Science, Faculty of Life Science & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
  • Al-Jamal KT; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
Adv Mater ; : e1802732, 2018 Aug 24.
Article en En | MEDLINE | ID: mdl-30144166
ABSTRACT
Hard corona (HC) protein, i.e., the environmental proteins of the biological medium that are bound to a nanosurface, is known to affect the biological fate of a nanomedicine. Due to the size, curvature, and specific surface area (SSA) 3-factor interactions inherited in the traditional 3D nanoparticle, HC-dependent bio-nano interactions are often poorly probed and interpreted. Here, the first HC-by-design case study in 2D is demonstrated that sequentially and linearly changes the HC quantity using functionalized graphene oxide (GO) nanosheets. The HC quantity and HC quality are analyzed using NanoDrop and label-free liquid chromatography-mass spectrometry (LC-MS) followed by principal component analysis (PCA). Cellular responses (uptake and cytotoxicity in J774 cell model) are compared using imaging cytometry and the modified lactate dehydrogenase assays, respectively. Cellular uptake linearly and solely correlates with HC quantity (R2 = 0.99634). The nanotoxicity, analyzed by retrospective design of experiment (DoE), is found to be dependent on the nanomaterial uptake (primary), HC composition (secondary), and nanomaterial exposure dose (tertiary). This unique 2D design eliminates the size-curvature-SSA multifactor interactions and can serve as a reliable screening platform to uncover HC-dependent bio-nano interactions to enable the next-generation quality-by-design (QbD) nanomedicines for better clinical translation.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2018 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2018 Tipo del documento: Article País de afiliación: Reino Unido